118 resultados para flowering features
em Queensland University of Technology - ePrints Archive
Resumo:
The effectiveness of higher-order spectral (HOS) phase features in speaker recognition is investigated by comparison with Mel Cepstral features on the same speech data. HOS phase features retain phase information from the Fourier spectrum unlikeMel–frequency Cepstral coefficients (MFCC). Gaussian mixture models are constructed from Mel– Cepstral features and HOS features, respectively, for the same data from various speakers in the Switchboard telephone Speech Corpus. Feature clusters, model parameters and classification performance are analyzed. HOS phase features on their own provide a correct identification rate of about 97% on the chosen subset of the corpus. This is the same level of accuracy as provided by MFCCs. Cluster plots and model parameters are compared to show that HOS phase features can provide complementary information to better discriminate between speakers.
Resumo:
In public venues, crowd size is a key indicator of crowd safety and stability. Crowding levels can be detected using holistic image features, however this requires a large amount of training data to capture the wide variations in crowd distribution. If a crowd counting algorithm is to be deployed across a large number of cameras, such a large and burdensome training requirement is far from ideal. In this paper we propose an approach that uses local features to count the number of people in each foreground blob segment, so that the total crowd estimate is the sum of the group sizes. This results in an approach that is scalable to crowd volumes not seen in the training data, and can be trained on a very small data set. As a local approach is used, the proposed algorithm can easily be used to estimate crowd density throughout different regions of the scene and be used in a multi-camera environment. A unique localised approach to ground truth annotation reduces the required training data is also presented, as a localised approach to crowd counting has different training requirements to a holistic one. Testing on a large pedestrian database compares the proposed technique to existing holistic techniques and demonstrates improved accuracy, and superior performance when test conditions are unseen in the training set, or a minimal training set is used.
Resumo:
Objectives. We tested predictions from the elaborated intrusion (EI) theory of desire, which distinguishes intrusive thoughts and elaborations, and emphasizes the importance of imagery. Secondarily, we undertook preliminary evaluations of the Alcohol Craving Experience (ACE) questionnaire, a new measure based on EI Theory. Methods. Participants (N ¼ 232) were in correspondence-based treatment trials for alcohol abuse or dependence. The study used retrospective reports obtained early in treatment using the ACE, and daily self-monitoring of urges, craving, mood and alcohol consumption. Results. The ACE displayed high internal consistency and test – retest reliability and sound relationships with self-monitored craving, and was related to Baseline alcohol dependence, but not to consumption. Imagery during craving was experienced by 81%,with 2.3 senses involved on average. More frequent imagery was associated with longer episode durations and stronger craving. Transient intrusive thoughts were reported by 87% of respondents, and were more common if they frequently attempted to stop alcohol cognitions. Associations between average daily craving and weekly consumption were seen. Depression and negative mood were associated with more frequent, stronger and longer lasting desires for alcohol. Conclusions. Results supported the distinction of automatic and controlled processes in craving, together with the importance of craving imagery. They were also consistent with prediction of consumption from cross-situational averages of craving, and with positive associations between craving and negative mood. However, this study’s retrospective reporting and correlational design require that its results be interpreted cautiously. Research using ecological momentary measures and laboratory manipulations is needed before confident inferences about causality can be made.
Resumo:
This paper describes a novel framework for facial expression recognition from still images by selecting, optimizing and fusing ‘salient’ Gabor feature layers to recognize six universal facial expressions using the K nearest neighbor classifier. The recognition comparisons with all layer approach using JAFFE and Cohn-Kanade (CK) databases confirm that using ‘salient’ Gabor feature layers with optimized sizes can achieve better recognition performance and dramatically reduce computational time. Moreover, comparisons with the state of the art performances demonstrate the effectiveness of our approach.
Resumo:
Research on social networking sites like Facebook is emerging but sparse. The exploratory study investigates the value users derive from self-described ‘cool’ Facebook applications, and explores the features that either encourage or discourage users to recommend application to their friends. Thus the concepts of value and cool are explored in a social networking setting. Our qualitative data shows that consumers derive a combination of functional value along with either social or emotional value from the applications. Female Facebook users indicated self-expression as important, while mates then to use Facebook application to socially compete. Three broad categories emerged for application features; symmetrical features can both encourage or discourage recommendation, asymmetrical features one encourage or discourage but not both, and polar features where different levels of the same feature encourage or discourage. Recommending or not recommending an application tends to be the result of a combination of features rather than one feature in isolation.