260 resultados para flash crowd attack

em Queensland University of Technology - ePrints Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distributed Denial-of-Service (DDoS) attacks continue to be one of the most pernicious threats to the delivery of services over the Internet. Not only are DDoS attacks present in many guises, they are also continuously evolving as new vulnerabilities are exploited. Hence accurate detection of these attacks still remains a challenging problem and a necessity for ensuring high-end network security. An intrinsic challenge in addressing this problem is to effectively distinguish these Denial-of-Service attacks from similar looking Flash Events (FEs) created by legitimate clients. A considerable overlap between the general characteristics of FEs and DDoS attacks makes it difficult to precisely separate these two classes of Internet activity. In this paper we propose parameters which can be used to explicitly distinguish FEs from DDoS attacks and analyse two real-world publicly available datasets to validate our proposal. Our analysis shows that even though FEs appear very similar to DDoS attacks, there are several subtle dissimilarities which can be exploited to separate these two classes of events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates and develops techniques for accurately detecting Internet-based Distributed Denial-of-Service (DDoS) Attacks where an adversary harnesses the power of thousands of compromised machines to disrupt the normal operations of a Web-service provider, resulting in significant down-time and financial losses. This thesis also develops methods to differentiate these attacks from similar-looking benign surges in web-traffic known as Flash Events (FEs). This thesis also addresses an intrinsic challenge in research associated with DDoS attacks, namely, the extreme scarcity of public domain datasets (due to legal and privacy issues) by developing techniques to realistically emulate DDoS attack and FE traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In public venues, crowd size is a key indicator of crowd safety and stability. Crowding levels can be detected using holistic image features, however this requires a large amount of training data to capture the wide variations in crowd distribution. If a crowd counting algorithm is to be deployed across a large number of cameras, such a large and burdensome training requirement is far from ideal. In this paper we propose an approach that uses local features to count the number of people in each foreground blob segment, so that the total crowd estimate is the sum of the group sizes. This results in an approach that is scalable to crowd volumes not seen in the training data, and can be trained on a very small data set. As a local approach is used, the proposed algorithm can easily be used to estimate crowd density throughout different regions of the scene and be used in a multi-camera environment. A unique localised approach to ground truth annotation reduces the required training data is also presented, as a localised approach to crowd counting has different training requirements to a holistic one. Testing on a large pedestrian database compares the proposed technique to existing holistic techniques and demonstrates improved accuracy, and superior performance when test conditions are unseen in the training set, or a minimal training set is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our students come from diverse backgrounds. They need flexibility in their learning. First year students tend to worry when they miss lectures or part of lectures. Having the lecture as an on line resource allows students to miss a lecture without stressing about it and to be more relaxed in the lecture, knowing that anything they may miss will be available later. The resource: The Windows based program from Blueberry Software (not Blackberry!) - BB Flashback - allows the simultaneous recording of the computer screen together with the audio, as well as Webcam recording. Editing capabilities include adding pause buttons, graphics and text to the file before exporting it in a flash file. Any diagrams drawn on the board or shown via visualiser can be photographed and easily incorporated. The audio from the file can be extracted if required to be posted as podcast. Exporting modes other than Flash are also available, allowing vodcasting if you wish. What you will need: - the recording software: it can be installed on the lecture hall computer just prior to lecture if needed - a computer: either the ones in lecture halls, especially if fitted with audio recording, or a laptop (I have used audio recording via Bluetooth for mobility). Feedback from students has been positive and will be presented on the poster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integral attacks are well-known to be effective against byte-based block ciphers. In this document, we outline how to launch integral attacks against bit-based block ciphers. This new type of integral attack traces the propagation of the plaintext structure at bit-level by incorporating bit-pattern based notations. The new notation gives the attacker more details about the properties of a structure of cipher blocks. The main difference from ordinary integral attacks is that we look at the pattern the bits in a specific position in the cipher block has through the structure. The bit-pattern based integral attack is applied to Noekeon, Serpent and present reduced up to 5, 6 and 7 rounds, respectively. This includes the first attacks on Noekeon and present using integral cryptanalysis. All attacks manage to recover the full subkey of the final round.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated crowd counting allows excessive crowding to be detected immediately, without the need for constant human surveillance. Current crowd counting systems are location specific, and for these systems to function properly they must be trained on a large amount of data specific to the target location. As such, configuring multiple systems to use is a tedious and time consuming exercise. We propose a scene invariant crowd counting system which can easily be deployed at a different location to where it was trained. This is achieved using a global scaling factor to relate crowd sizes from one scene to another. We demonstrate that a crowd counting system trained at one viewpoint can achieve a correct classification rate of 90% at a different viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In public venues, crowd size is a key indicator of crowd safety and stability. In this paper we propose a crowd counting algorithm that uses tracking and local features to count the number of people in each group as represented by a foreground blob segment, so that the total crowd estimate is the sum of the group sizes. Tracking is employed to improve the robustness of the estimate, by analysing the history of each group, including splitting and merging events. A simplified ground truth annotation strategy results in an approach with minimal setup requirements that is highly accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This special issue of Popular Communication examines the impact of the global financial crisis and recession on differnt aspects of global and regional media and the cultural industries, changing practices of media production, as well as media consumption, and the interplay of economic challenges and technological change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper contributes to the recent debate about the role of referees in the home advantage phenomenon. Specifically, it aims to provide a convincing answer to the newly posed question of the existence of individual differences among referees in terms of the home advantage (Boyko, Boyko, & Boyko, 2007; Johnston, 2008). Using multilevel modelling on a large and representative dataset we find that (1) the home advantage effect differs significantly among referees, and (2) this relationship is moderated by the size of the crowd. These new results suggest that a part of the home advantage is due to the effect of the crowd on the referees, and that some referees are more prone to be influenced by the crowd than others. This provides strong evidence to indicate that referees are a significant contributing factor to the home advantage. The implications of these findings are discussed both in terms of the relevant social psychological research, and with respect to the selection, assessment, and training of referees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a scene invariant crowd counting algorithm that uses local features to monitor crowd size. Unlike previous algorithms that require each camera to be trained separately, the proposed method uses camera calibration to scale between viewpoints, allowing a system to be trained and tested on different scenes. A pre-trained system could therefore be used as a turn-key solution for crowd counting across a wide range of environments. The use of local features allows the proposed algorithm to calculate local occupancy statistics, and Gaussian process regression is used to scale to conditions which are unseen in the training data, also providing confidence intervals for the crowd size estimate. A new crowd counting database is introduced to the computer vision community to enable a wider evaluation over multiple scenes, and the proposed algorithm is tested on seven datasets to demonstrate scene invariance and high accuracy. To the authors' knowledge this is the first system of its kind due to its ability to scale between different scenes and viewpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In public places, crowd size may be an indicator of congestion, delay, instability, or of abnormal events, such as a fight, riot or emergency. Crowd related information can also provide important business intelligence such as the distribution of people throughout spaces, throughput rates, and local densities. A major drawback of many crowd counting approaches is their reliance on large numbers of holistic features, training data requirements of hundreds or thousands of frames per camera, and that each camera must be trained separately. This makes deployment in large multi-camera environments such as shopping centres very costly and difficult. In this chapter, we present a novel scene-invariant crowd counting algorithm that uses local features to monitor crowd size. The use of local features allows the proposed algorithm to calculate local occupancy statistics, scale to conditions which are unseen in the training data, and be trained on significantly less data. Scene invariance is achieved through the use of camera calibration, allowing the system to be trained on one or more viewpoints and then deployed on any number of new cameras for testing without further training. A pre-trained system could then be used as a ‘turn-key’ solution for crowd counting across a wide range of environments, eliminating many of the costly barriers to deployment which currently exist.