340 resultados para fixation stiffness

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project examined the differences in healing of metaphyseal bone, when the implants of variable stiffness are used for fracture fixation. This knowledge is important in development of novel orthopaedic implants, used in orthopaedic surgery to stabilise the fractures. Dr Koval used a mouse model to create a fracture, and then assessed its healing with a combination of mechanical testing, microcomputed tomography and histomorphometric examination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bone’s capacity to repair following trauma is both unique and astounding. However, fractures sometimes fail to heal. Hence, the goal of fracture treatment is the restoration of bone’s structure, composition and function. Fracture fixation devices should provide a favourable mechanical and biological environment for healing to occur. The use of internal fixation is increasing as these devices may be applied with less invasive techniques. Recent studies suggest however that, internal fixation devices may be overly stiff and suppresses callus formation. The degree of mechanical stability influences the healing outcome. This is determined by the stiffness of the fixation device and the degree of limb loading. This project aims to characterise the fixation stability of an internal plate fixation device and the influence of modifications to its configuration on implant stability. As there are no standardised methods for the determination of fixation stiffness, the first part of this project aims to compares different methodologies and determines the most appropriate method to characterise the stiffness of internal plate fixators. The stiffness of a fixation device also influences the physiological loads experienced by the healing bone. Since bone adapts to this applied load by undergoing changes through a remodelling process, undesirable changes could occur during the period of treatment with an implant. The second part of this project aims to develop a methodology to quantify remodelling changes. This quantification is expected to aid our understanding of the changes in pattern due to implant related remodelling and on the factors driving the remodelling process. Knowledge gained in this project is useful to understand how the configuration of internal fixation devices can promote timely healing and prevent undesirable bone loss.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical conditions in the repair tissues are known to influence the outcome of fracture healing. These mechanical conditions are determined by the stiffness of fixation and limb loading. Experimental studies have shown that there is a range of beneficial fixation stiffness for timely healing and that fixation stiffness that is either too flexible or too stiff impairs callus healing. However, much less is known about how mechanical conditions influence the biological processes that make up the sequence of bone repair and if indeed mechanical stimulation is required at all stages of repair. Secondary bone healing occurs through a sequence of events broadly characterised by inflammation, proliferation, consolidation and remodelling. It is our hypothesis that a change in fixation stiffness from very flexible to stiff can shorten the time to healing relative to constant fixation stiffness. Flexible fixation has the benefit of promoting greater callus formation and needs to be applied during the proliferative stage of repair. The greater callus size helps to stabilize the fragments earlier allowing mineralization to occur faster. Together with stable/rigid fixation applied during the latter stage of repair to ensure mineralization of the callus. The predicted benefits of inverse dynamization are shortened healing in comparison to very flexible fixation and healing time comparable or faster than stable fixation with greater callus stiffness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction & Aims Optimising fracture treatments requires a sound understanding of relationships between stability, callus development and healing outcomes. This has been the goal of computational modelling, but discrepancies remain between simulations and experimental results. We compared healing patterns vs fixation stiffness between a novel computational callus growth model and corresponding experimental data. Hypothesis We hypothesised that callus growth is stimulated by diffusible signals, whose production is in turn regulated by mechanical conditions at the fracture site. We proposed that introducing this scheme into computational models would better replicate the observed tissue patterns and the inverse relationship between callus size and fixation stiffness. Method Finite element models of bone healing under stiff and flexible fixation were constructed, based on the parameters of a parallel rat femoral osteotomy study. An iterative procedure was implemented, to simulate the development of callus and its mechanical regulation. Tissue changes were regulated according to published mechano-biological criteria. Predictions of healing patterns were compared between standard models, with a pre-defined domain for callus development, and a novel approach, in which periosteal callus growth is driven by a diffusible signal. Production of this signal was driven by local mechanical conditions. Finally, each model’s predictions were compared to the corresponding histological data. Results Models in which healing progressed within a prescribed callus domain predicted that greater interfragmentary movements would displace early periosteal bone formation further from the fracture. This results from artificially large distortional strains predicted near the fracture edge. While experiments showed increased hard callus size under flexible fixation, this was not reflected in the standard models. Allowing the callus to grow from a thin soft tissue layer, in response to a mechanically stimulated diffusible signal, results in a callus shape and tissue distribution closer to those observed histologically. Importantly, the callus volume increased with increasing interfragmentary movement. Conclusions A novel method to incorporate callus growth into computational models of fracture healing allowed us to successfully capture the relationship between callus size and fixation stability observed in our rat experiments. This approach expands our toolkit for understanding the influence of different fixation strategies on healing outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fracture healing is influenced by fixation stability and experimental evidence suggests that the initial mechanical conditions may determine the healing outcome. We hypothesised that mechanical conditions influence not only the healing outcome, but also the early phase of fracture healing. Additionally, it was hypothesised that decreased fixation stability characterised by an increased shear interfragmentary movement results in a delay in healing. Sixty-four sheep underwent a mid-shaft tibial osteotomy which was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture callus was analysed using radiological, biomechanical and histological techniques. The tibia treated with semi-rigid fixation showed inferior callus stiffness and quality after 6 weeks. At 9 weeks, the calluses were no longer distinguishable in their mechanical competence. The calluses at 9 weeks produced under rigid fixation were smaller and consisted of a reduced fibrous tissue component. These results demonstrate that the callus formation over the course of healing differed both morphologically and in the rate of development. In this study, we provide evidence that the course of healing is influenced by the initial fixation stability. The semi-rigid fixator did not result in delayed healing, but a less optimal healing path was taken. An upper limit of stability required for successful healing remains unknown, however a limit by which healing is less optimal has been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFix(TM) plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse Fix(TM) plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanically well-defined stabilization systems have only recently become available, providing standardized conditions for studying the role of the mechanical environment on mouse bone fracture healing. The aim of this study was to characterize the time course of strength recovery and callus development of mouse femoral osteotomies stabilized with either low or high flexibility (in bending and torsion) internal fixation plates. Animals were euthanized and femora excised at 14, 21, and 28 days post-osteotomy for microCT analysis and torsional strength testing. While a larger mineralized callus was observed in osteotomies under more flexible conditions at all time points, the earlier bridging of the mineralized callus under less flexible conditions by 1 week resulted in an earlier recovery of torsional strength in mice stabilized with low flexibility fixation. Ultimate torque values for these bones were significantly higher at 14 and 21 days post-osteotomy compared to bones with the more flexible stabilization. Our study confirms the high reproducibility of the results that are achieved with this new implant system, therefore making it ideal for studying the influence of the mechanical environment on murine fracture healing under highly standardized conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful healing of long bone fractures is dependent on the mechanical environment created within the fracture, which in turn is dependent on the fixation strategy. Recent literature reports have suggested that locked plating devices are too stiff to reliably promote healing. However, in vitro testing of these devices has been inconsistent in both method of constraint and reported outcomes, making comparisons between studies and the assessment of construct stiffness problematic. Each of the methods previously used in the literature were assessed for their effect on the bending of the sample and concordant stiffness. The choice of outcome measures used in in vitro fracture studies was also assessed. Mechanical testing was conducted on seven hole locked plated constructs in each method for comparison. Based on the assessment of each method the use of spherical bearings, ball joints or similar is suggested at both ends of the sample. The use of near and far cortex movement was found to be more comprehensive and more accurate than traditional centrally calculated inter fragmentary movement values; stiffness was found to be highly susceptible to the accuracy of deformation measurements and constraint method, and should only be used as a within study comparison method. The reported stiffness values of locked plate constructs from in vitro mechanical testing is highly susceptible to testing constraints and output measures, with many standard techniques overestimating the stiffness of the construct. This raises the need for further investigation into the actual mechanical behaviour within the fracture gap of these devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved