143 resultados para fish populations
em Queensland University of Technology - ePrints Archive
Resumo:
Harmful Algal Blooms (HABs) are a worldwide problem that have been increasing in frequency and extent over the past several decades. HABs severely damage aquatic ecosystems by destroying benthic habitat, reducing invertebrate and fish populations and affecting larger species such as dugong that rely on seagrasses for food. Few statistical models for predicting HAB occurrences have been developed, and in common with most predictive models in ecology, those that have been developed do not fully account for uncertainties in parameters and model structure. This makes management decisions based on these predictions more risky than might be supposed. We used a probit time series model and Bayesian Model Averaging (BMA) to predict occurrences of blooms of Lyngbya majuscula, a toxic cyanophyte, in Deception Bay, Queensland, Australia. We found a suite of useful predictors for HAB occurrence, with Temperature figuring prominently in models with the majority of posterior support, and a model consisting of the single covariate average monthly minimum temperature showed by far the greatest posterior support. A comparison of alternative model averaging strategies was made with one strategy using the full posterior distribution and a simpler approach that utilised the majority of the posterior distribution for predictions but with vastly fewer models. Both BMA approaches showed excellent predictive performance with little difference in their predictive capacity. Applications of BMA are still rare in ecology, particularly in management settings. This study demonstrates the power of BMA as an important management tool that is capable of high predictive performance while fully accounting for both parameter and model uncertainty.
Resumo:
Gulland's [Gulland, J.A., 1965. Estimation of mortality rates. Annex to Arctic Fisheries Working Group Report (meeting in Hamburg, January 1965). ICES. C.M. 1965, Doc. No. 3 (mimeographed)] virtual population analysis (VPA) is commonly used for studying the dynamics of harvested fish populations. However, it necessitates the solving of a nonlinear equation for the instantaneous rate of fishing mortality of the fish in a population. Pope [Pope, J.G., 1972. An investigation of the accuracy of Virtual Population Analysis using cohort analysis. ICNAF Res. Bull. 9, 65-74. Also available in D.H. Cushing (ed.) (1983), Key Papers on Fish Populations, p. 291-301, IRL Press, Oxford, 405 p.] eliminated this necessity in his cohort analysis by approximating its underlying age- and time-dependent population model. His approximation has since become one of the most commonly used age- and time-dependent fish population models in fisheries science. However, some of its properties are not well understood. For example, many assert that it describes the dynamics of a fish population, from which the catch of fish is taken instantaneously in the middle of the year. Such an assertion has never been proven, nor has its implied instantaneous rate of fishing mortality of the fish of a particular age at a particular time been examined, nor has its implied catch equation been derived from a general catch equation. In this paper, we prove this assertion, examine its implied instantaneous rate of fishing mortality of the fish of a particular age at a particular time, derive its implied catch equation from a general catch equation, and comment on how to structure an age- and time-dependent population model to ensure its internal consistency. This work shows that Gulland's (1965) virtual population analysis and Pope's (1972) cohort analysis lie at the opposite end of a continuous spectrum as a general model for a seasonally occurring fishery; Pope's (1972) approximation implies an infinitely large instantaneous rate of fishing mortality of the fish of a particular age at a particular time in a fishing season of zero length; and its implied catch equation has an undefined instantaneous rate of fishing mortality of the fish in a population, but a well-defined cumulative instantaneous rate of fishing mortality of the fish in the population. This work also highlights a need for a more careful treatment of the times of start and end of a fishing season in fish population models.
Resumo:
Objective: With growing recognition of the role of inflammation in the development of chronic and acute disease, fish oil is increasingly used as a therapeutic agent, but the nature of the intervention may pose barriers to adherence in clinical populations. Our objective was to investigate the feasibility of using a fish oil supplement in hemodialysis patients. ---------- Design: This was a nonrandomized intervention study.---------- Setting: Eligible patients were recruited at the Hemodialysis Unit of Wesley Hospital, Brisbane, Queensland, Australia. Patients The sample included 28 maintenance hemodialysis patients out of 43 eligible patients in the unit. Exclusion criteria included patients regularly taking a fish oil supplement at baseline, receiving hemodialysis for less than 3 months, or being unable to give informed consent.---------- Intervention: Eicosapentaenoic acid (EPA) was administered at 2000 mg/day (4 capsules) for 12 weeks. Adherence was measured at baseline and weekly throughout the study according to changes in plasma EPA, and was further measured subjectively by self-report.---------- Results: Twenty patients (74%) adhered to the prescription based on changes in plasma EPA, whereas an additional two patients self-reported good adherence. There was a positive relationship between fish oil intake and change in plasma EPA. Most patients did not report problems with taking the fish oil. Using the baseline data, it was not possible to characterize adherent patients.---------- Conclusions: Despite potential barriers, including the need to take a large number of prescribed medications already, 74% of hemodialysis patients adhered to the intervention. This study demonstrated the feasibility of using fish oil in a clinical population.
Resumo:
Glacial cycles during the Pleistocene reduced sea levels and created new land connections in northern Australia, where many currently isolated rivers also became connected via an extensive paleo-lake system, 'Lake Carpentaria'. However, the most recent period during which populations of freshwater species were connected by gene flow across Lake Carpentaria is debated: various 'Lake Carpentaria hypotheses' have been proposed. Here, we used a statistical phylogeographic approach to assess the timing of past population connectivity across the Carpentaria region in the obligate freshwater fish, Glossamia aprion. Results for this species indicate that the most recent period of genetic exchange across the Carpentaria region coincided with the mid- to late Pleistocene, a result shown previously for other freshwater and diadromous species. Based on these findings and published studies for various freshwater, diadromous and marine species, we propose a set of 'Lake Carpentaria' hypotheses to explain past population connectivity in aquatic species: (1) strictly freshwater species had widespread gene flow in the mid- to late Pleistocene before the last glacial maximum; (2) marine species were subdivided into eastern and western populations by land during Pleistocene glacial phases; and (3) past connectivity in diadromous species reflects the relative strength of their marine affinity.
Resumo:
1. The phylogeography of freshwater taxa is often integrally linked with landscape changes such as drainage re-alignments that may present the only avenue for historical dispersal for these taxa. Classical models of gene flow do not account for landscape changes and so are of little use in predicting phylogeography in geologically young freshwater landscapes. When the history of drainage formation is unknown, phylogeographical predictions can be based on current freshwater landscape structure, proposed historical drainage geomorphology, or from phylogeographical patterns of co-distributed taxa. 2. This study describes the population structure of a sedentary freshwater fish, the chevron snakehead (Channa striata), across two river drainages on the Indochinese Peninsula. The phylogeographical pattern recovered for C. striata was tested against seven hypotheses based on contemporary landscape structure, proposed history and phylogeographical patterns of codistributed taxa. 3. Consistent with the species ecology, analysis of mitochondrial and microsatellite loci revealed very high differentiation among all sampled sites. A strong signature of historical population subdivision was also revealed within the contemporary Mekong River Basin (MRB). Of the seven phylogeographical hypotheses tested, patterns of co-distributed taxa proved to be the most adequate for describing the phylogeography of C. striata. 4. Results shed new light on SE Asian drainage evolution, indicating that the Middle MRB probably evolved via amalgamation of at least three historically independent drainage sections and in particular that the Mekong River section centred around the northern Khorat Plateau in NE Thailand was probably isolated from the greater Mekong for an extensive period of evolutionary time. In contrast, C. striata populations in the Lower MRB do not show a phylogeographical signature of evolution in historically isolated drainage lines, suggesting drainage amalgamation has been less important for river landscape formation in this region.
Resumo:
Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.
Resumo:
The Mekong is the most productive river fishery in the world, and such as, the Mekong River Basin (MRB) is very important to very large human populations across the region as a source of revenue (through fishing and marketing of aquatic resources products) and as the major source for local animal protein. Threats to biodiversity in the MRB, either to the fishery sector itself or to other sectors are a major concern, even though currently, fisheries across this region are still very productive. If not managed properly however, fish population declines will cause significant economic impact and affect livelihoods of local people and will have a major impact on food security and nutrition. Biodiversity declines will undoubtedly affect food security, income and socio-economic status of people in the MRB that depend on aquatic resources. This is an indicator of unsustainable development and hence should be avoided. Genetic diversity (biodiversity) that can be measured using techniques based on DNA markers; refers to variation within and among populations within the same species or reproductive units. In a population, new genetic variation is generated by sexual recombination contributed by individuals with mutations in genes and chromosomes. Over time, populations of a species that are not reproducing together will diverge as differential impacts of selection and genetic drift change their genetic attributes. For mud carp (Henicorhynchus spp.), understanding the status of breeding units in the MRB will be important for their long term persistence, sustainability and for implementing effective management strategies. Earlier analysis of stock structure in two economically important mud carp species (Henicorhynchus siamensis and H. lobatus) in the MRB completed with mtDNA markers identified a number of populations of both species where gene flow had apparently been interrupted or reduced but applying these data directly to management unit identification is potentially compromised because information was only available about female dispersal patterns. The current study aimed to address this problem and to fully assess the extent of current gene flow (nDNA) and reproductive exchange among selected wild populations of two species of carp (Henicorhynchus spp.) of high economic importance in the MRB using combined mtDNA and nDNA markers. In combination, the data can be used to define effective management units for each species. In general, nDNA diversity for H. lobatus (with average allelic richness (A) 7.56 and average heterozygosity (Ho) 0.61) was very similar to that identified for H. siamensis (A = 6.81 and Ho = 0.75). Both mud carp species show significant but low FST estimates among populations as a result of lower genetic diversity among sampled populations compared with genetic diversity within populations that may potentially mask any 'real' population structure. Overall, population genetic structure patterns from mtDNA and nDNA in both Henicorhynchus species were largely congruent. Different population structures however, were identified for the two Henicorhynchus species across the same geographical area. Apparent co-similarity in morphology and co-distribution of these two relatively closely related species does not apparently imply parallel evolutionary histories. Differences in each species population structure likely reflect historical drainage rearrangement of the Mekong River. The data indicate that H. siamensis is likely to have occupied the Mekong system for much longer than has H. lobatus in the past. Two divergent stocks were identified for H. lobatus in the MRB below the Khone Falls while a single stock had been evident in the earlier mtDNA study. This suggests that the two Henicorhynchus species may possess different life history traits and that different patterns of gene flow has likely influenced modern genetic structure in these close congeners. In combination, results of the earlier mtDNA and the current study have implications for effective management of both Henicorhynchus species across the MRB. Currently, both species are essentially treated as a single management unit in this region. This strategy may be appropriate for H. lobatus as a single stock was evident in the main stream of the MRB, but may not be appropriate for H. siamensis as more than a single stock was identified across the same range for this species. Management strategies should consider this difference to conserve overall biodiversity (local discrete populations) and this will include maintaining natural habitat and migration pathways, provision of fish sanctuaries (refuges) and may also require close monitoring of any stock declines, a signal that may require effective recovery strategies.
Resumo:
Reducing unwanted trawl bycatch is actively encouraged in Australia, particularly in prawn trawl fisheries. We tested the performance of a Bycatch Reduction Device, the Yarrow Fisheye, during two periods of commercial fishing operations in Australia's Northern Prawn Fishery, by comparing the catches of paired treatment and control nets. We compared the catch weights of the small fish and invertebrate bycatch, and the commercially important tiger prawns, from 42 trawls in 2002. The Yarrow Fisheye reduced the weight of small bycatch by a mean of 22.7%, with no loss of tiger prawn. We also compared the numbers of seasnakes caught in 41 and 72 trawls during the spring trawling seasons of 2004 and 2005, respectively. The Yarrow Fisheye reduced the catches by a mean of 43.3%. Flume-tank tests of the Yarrow Fisheye showed that this device created a slow water-flow region extending over 2 m downstream from its position in the net, and close to where the catch accumulates. Finfish and seasnakes may be exploiting this slow water-flow region to escape via the eye, Although the reductions in fish and seasnake bycatch were excellent, we think they could be further improved by relating differences in fisheye position and localised water displacements, to design and rigging changes.
Resumo:
Aims: Changing behaviour to reduce stroke risk is a difficult prospect made particularly complex because of psychological factors. This study examined predictors of intentions and behaviours to reduce stroke risk in a sample of at-risk individuals, seeking to find how knowledge and health beliefs influenced both intention and actual behaviour to reduce stroke risk. Methods: A repeated measures design was used to assess behavioural intentions at time 1 (T1) and subsequent behaviour (T2). One hundred and twenty six respondents completed an online survey at T1, and behavioural follow-up data were collected from approximately 70 participants 1 month later. Predictors were stroke knowledge, demographic variables, and beliefs about stroke that were derived from an expanded health belief model. Dependent measures were: exercise and weight loss, and intention to engage in these behaviours to reduce stroke risk. Findings: Multiple hierarchical regression analyses showed that, for exercise and weight loss respectively, different health beliefs predicted intention to control stroke risk. The most important exercise-related health beliefs were benefits, susceptibility, and self-efficacy; for weight loss, the most important beliefs were barriers, and to a lesser degree, susceptibility and subjective norm. Conclusions: Health beliefs may play an important role in stroke prevention, particularly beliefs about susceptibility because these emerged for both behaviours. Stroke education and prevention programmes that selectively target the health beliefs relevant to specific behaviours may prove most efficacious.