36 resultados para fibrewise map and homotopy
em Queensland University of Technology - ePrints Archive
Resumo:
The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.
Resumo:
RatSLAM is a vision-based SLAM system based on extended models of the rodent hippocampus. RatSLAM creates environment representations that can be processed by the experience mapping algorithm to produce maps suitable for goal recall. The experience mapping algorithm also allows RatSLAM to map environments many times larger than could be achieved with a one to one correspondence between the map and environment, by reusing the RatSLAM maps to represent multiple sections of the environment. This paper describes experiments investigating the effects of the environment-representation size ratio and visual ambiguity on mapping and goal navigation performance. The experiments demonstrate that system performance is weakly dependent on either parameter in isolation, but strongly dependent on their joint values.
Resumo:
This paper addresses the challenge of developing robots that map and navigate autonomously in real world, dynamic environments throughout the robot’s entire lifetime – the problem of lifelong navigation. Static mapping algorithms can produce highly accurate maps, but have found few applications in real environments that are in constant flux. Environments change in many ways: both rapidly and gradually, transiently and permanently, geometrically and in appearance. This paper demonstrates a biologically inspired navigation algorithm, RatSLAM, that uses principles found in rodent neural circuits. The algorithm is demonstrated in an office delivery challenge where the robot was required to perform mock deliveries to goal locations in two different buildings. The robot successfully completed 1177 out of 1178 navigation trials over 37 hours of around the clock operation spread over 11 days.
Resumo:
Blooms of the toxic cyanobacterium majuscula Lyngbya in the coastal waters of southeast Queensland have caused adverse impacts on both environmental health and human health, and on local economies such as fishing and tourism. A number of studies have confirmed that the main limiting nutrients (“nutrients of concern”) that contribute to these blooms area Fe, DOC, N, P and also pH. This study is conducted to establish the distribution of these parameters in a typical southeast Queensland coastal setting. The study maps the geochemistry of shallow groundwater in the mainland Pumicestone catchment with an emphasis on the nutrients of concern to understand how these nutrients relate to aquifer materials, landuse and anthropogenic activities. The results of the study form a GIS information layer which will be incorporated into a larger GIS model being produced by Queensland Department of Environment and Resource Management (DERM) to support landuse management to avoid/minimize blooms of Lyngbya in Moreton Bay, southeast Queensland, and other similar settings. A total of 38 boreholes were established in the mainland Pumicestone region and four sampling rounds of groundwater carried out in both dry and wet conditions. These groundwater samples were measured in the field for physico-chemical parameters, and in the laboratory analyses for the nutrients of concern, and other major and minor ions. Aquifer materials were confirmed using the Geological Survey of Queensland digital geology map, and geomaterials were assigned to seven categories which are A (sands), B (silts, sandy silts), C (estuarine mud, silts), D (humid soils), E (alluvium), F (sandstone) and G (other bedrock). The results of the water chemistry were examined by use of the software package AquaChem/AqQA, and divided into six groundwater groups, based on groundwater chemical types and location of boreholes. The type of aquifer material and location, and proximity to waterways was found to be important because they affected physico-chemical properties and concentrations of nutrients of concern and dissolved ions. The analytical results showed that iron concentrations of shallow groundwaters were high due to acid sulfate soils, and also mud and silt, but were lower in sand materials. DOC concentrations of these shallow groundwaters in the sand material were high probably due to rapid infiltration. In addition, DOC concentrations in some boreholes were high because they were installed in organic rich wetlands. The pH values of boreholes were from acidic to near neutral; some boreholes with pH values were low (< 4), showing acid sulfate soils in these boreholes. Concentrations of total nitrogen and total phosphorus of groundwaters were generally low, and the main causes of elevated concentrations of total nitrogen and total phosphorus are largely due to animal and human wastes and tend to be found in localized source areas. Comparison of the relative percentage of nitrogen species (NH3/NH4< Org-N, NO3-N and NO2-N) demonstrated that they could be related to sources such as animal waste, residential and agricultural fertilizers, forest and vegetation, mixed residents and farms, and variable setting and vegetation covers. Total concentrations of dissolved ions in sampling round 3 (dry period) were higher than those in sampling round 2 (wet period) due to both evaporation of groundwater in the dry period and the dilution of rainfall in the wet period. This showed that the highest concentrations of nutrients of concern were due to acid sulfate soils, aquifer materials, landuse and anthropogenic activities and were typically in aquifer materials of E (alluvium) and C (estuarine muds) and locations of Burpengary, Caboolture, and Glass Mountain catchments.
Resumo:
Process-aware information systems, ranging from generic workflow systems to dedicated enterprise information systems, use work-lists to offer so-called work items to users. In real scenarios, users can be confronted with a very large number of work items that stem from multiple cases of different processes. In this jungle of work items, users may find it hard to choose the right item to work on next. The system cannot autonomously decide which is the right work item, since the decision is also dependent on conditions that are somehow outside the system. For instance, what is “best” for an organisation should be mediated with what is “best” for its employees. Current work-list handlers show work items as a simple sorted list and therefore do not provide much decision support for choosing the right work item. Since the work-list handler is the dominant interface between the system and its users, it is worthwhile to provide an intuitive graphical interface that uses contextual information about work items and users to provide suggestions about prioritisation of work items. This paper uses the so-called map metaphor to visualise work items and resources (e.g., users) in a sophisticated manner. Moreover, based on distance notions, the work-list handler can suggest the next work item by considering different perspectives. For example, urgent work items of a type that suits the user may be highlighted. The underlying map and distance notions may be of a geographical nature (e.g., a map of a city or office building), but may also be based on process designs, organisational structures, social networks, due dates, calendars, etc. The framework proposed in this paper is generic and can be applied to any process-aware information system. Moreover, in order to show its practical feasibility, the paper discusses a full-fledged implementation developed in the context of the open-source workflow environment YAWL, together with two real examples stemming from two very different scenarios. The results of an initial usability evaluation of the implementation are also presented, which provide a first indication of the validity of the approach.
Resumo:
Drosophila serrata is a member of the montium group, which contains more than 98 species and until recently was considered a subgroup within the melanogaster group. This Drosophila species is an emerging model system for evolutionary quantitative genetics and has been used in studies of species borders, clinal variation and sexual selection. Despite the importance of D. serrata as a model for evolutionary research, our poor understanding of its genome remains a significant limitation. Here, we provide a first-generation gene-based linkage map and a physical map for this species. Consistent with previous studies of other drosophilids we observed strong conservation of genes within chromosome arms homologous with D. melanogaster but major differences in within-arm synteny. These resources will be a useful complement to ongoing genome sequencing efforts and QTL mapping studies in this species
Resumo:
This paper outlines existing matching diagnostics, which may be used for identifying invalid matches and estimating the probability of a correct match. In addition, it proposes a new diagnostic for error prediction which can be used with the rank and census transforms. Both the existing and the new diagnostics have been evaluated and compared for a number of test images. In each case, a confidence estimate was computed for every location of the disparity map, and disparities having a low confidence estimate removed from the disparity map. Collectively, these confidence estimates may be termed a confidence map. Such information would be useful for potential applications of stereo vision such as automation and navigation.
Resumo:
The convergence of locative and social media with collaborative interfaces and data visualisation has expanded the potential of online information provision. Offering new ways for communities to share contextually specific information, it presents the opportunity to expand social media’s current focus on micro self-publishing with applications that support communities to actively address areas of local need. This paper details the design and development of a prototype application that illustrates this potential. Entitled PetSearch, it was designed in collaboration with the Animal Welfare League of Queensland to support communities to map and locate lost, found and injured pets, and to build community engagement in animal welfare issues. We argue that, while established approaches to social and locative media provide a useful foundation for designing applications to harness social capital, they must be re-envisaged if they are to effectively facilitate community collaboration. We conclude by arguing that the principles of user engagement and co-operation employed in this project can be extrapolated to other online approaches that aim to facilitate co-operative problem solving for social benefit.
Resumo:
The challenge of persistent appearance-based navigation and mapping is to develop an autonomous robotic vision system that can simultaneously localize, map and navigate over the lifetime of the robot. However, the computation time and memory requirements of current appearance-based methods typically scale not only with the size of the environment but also with the operation time of the platform; also, repeated revisits to locations will develop multiple competing representations which reduce recall performance. In this paper we present a solution to the persistent localization, mapping and global path planning problem in the context of a delivery robot in an office environment over a one-week period. Using a graphical appearance-based SLAM algorithm, CAT-Graph, we demonstrate constant time and memory loop closure detection with minimal degradation during repeated revisits to locations, along with topological path planning that improves over time without using a global metric representation. We compare the localization performance of CAT-Graph to openFABMAP, an appearance-only SLAM algorithm, and the path planning performance to occupancy-grid based metric SLAM. We discuss the limitations of the algorithm with regard to environment change over time and illustrate how the topological graph representation can be coupled with local movement behaviors for persistent autonomous robot navigation.
Resumo:
Recent road safety statistics show that the decades-long fatalities decreasing trend is stopping and stagnating. Statistics further show that crashes are mostly driven by human error, compared to other factors such as environmental conditions and mechanical defects. Within human error, the dominant error source is perceptive errors, which represent about 50% of the total. The next two sources are interpretation and evaluation, which accounts together with perception for more than 75% of human error related crashes. Those statistics show that allowing drivers to perceive and understand their environment better, or supplement them when they are clearly at fault, is a solution to a good assessment of road risk, and, as a consequence, further decreasing fatalities. To answer this problem, currently deployed driving assistance systems combine more and more information from diverse sources (sensors) to enhance the driver's perception of their environment. However, because of inherent limitations in range and field of view, these systems' perception of their environment remains largely limited to a small interest zone around a single vehicle. Such limitations can be overcomed by increasing the interest zone through a cooperative process. Cooperative Systems (CS), a specific subset of Intelligent Transportation Systems (ITS), aim at compensating for local systems' limitations by associating embedded information technology and intervehicular communication technology (IVC). With CS, information sources are not limited to a single vehicle anymore. From this distribution arises the concept of extended or augmented perception. Augmented perception allows extending an actor's perceptive horizon beyond its "natural" limits not only by fusing information from multiple in-vehicle sensors but also information obtained from remote sensors. The end result of an augmented perception and data fusion chain is known as an augmented map. It is a repository where any relevant information about objects in the environment, and the environment itself, can be stored in a layered architecture. This thesis aims at demonstrating that augmented perception has better performance than noncooperative approaches, and that it can be used to successfully identify road risk. We found it was necessary to evaluate the performance of augmented perception, in order to obtain a better knowledge on their limitations. Indeed, while many promising results have already been obtained, the feasibility of building an augmented map from exchanged local perception information and, then, using this information beneficially for road users, has not been thoroughly assessed yet. The limitations of augmented perception, and underlying technologies, have not be thoroughly assessed yet. Most notably, many questions remain unanswered as to the IVC performance and their ability to deliver appropriate quality of service to support life-saving critical systems. This is especially true as the road environment is a complex, highly variable setting where many sources of imperfections and errors exist, not only limited to IVC. We provide at first a discussion on these limitations and a performance model built to incorporate them, created from empirical data collected on test tracks. Our results are more pessimistic than existing literature, suggesting IVC limitations have been underestimated. Then, we develop a new CS-applications simulation architecture. This architecture is used to obtain new results on the safety benefits of a cooperative safety application (EEBL), and then to support further study on augmented perception. At first, we confirm earlier results in terms of crashes numbers decrease, but raise doubts on benefits in terms of crashes' severity. In the next step, we implement an augmented perception architecture tasked with creating an augmented map. Our approach is aimed at providing a generalist architecture that can use many different types of sensors to create the map, and which is not limited to any specific application. The data association problem is tackled with an MHT approach based on the Belief Theory. Then, augmented and single-vehicle perceptions are compared in a reference driving scenario for risk assessment,taking into account the IVC limitations obtained earlier; we show their impact on the augmented map's performance. Our results show that augmented perception performs better than non-cooperative approaches, allowing to almost tripling the advance warning time before a crash. IVC limitations appear to have no significant effect on the previous performance, although this might be valid only for our specific scenario. Eventually, we propose a new approach using augmented perception to identify road risk through a surrogate: near-miss events. A CS-based approach is designed and validated to detect near-miss events, and then compared to a non-cooperative approach based on vehicles equiped with local sensors only. The cooperative approach shows a significant improvement in the number of events that can be detected, especially at the higher rates of system's deployment.
Resumo:
For robots operating in outdoor environments, a number of factors, including weather, time of day, rough terrain, high speeds, and hardware limitations, make performing vision-based simultaneous localization and mapping with current techniques infeasible due to factors such as image blur and/or underexposure, especially on smaller platforms and low-cost hardware. In this paper, we present novel visual place-recognition and odometry techniques that address the challenges posed by low lighting, perceptual change, and low-cost cameras. Our primary contribution is a novel two-step algorithm that combines fast low-resolution whole image matching with a higher-resolution patch-verification step, as well as image saliency methods that simultaneously improve performance and decrease computing time. The algorithms are demonstrated using consumer cameras mounted on a small vehicle in a mixed urban and vegetated environment and a car traversing highway and suburban streets, at different times of day and night and in various weather conditions. The algorithms achieve reliable mapping over the course of a day, both when incrementally incorporating new visual scenes from different times of day into an existing map, and when using a static map comprising visual scenes captured at only one point in time. Using the two-step place-recognition process, we demonstrate for the first time single-image, error-free place recognition at recall rates above 50% across a day-night dataset without prior training or utilization of image sequences. This place-recognition performance enables topologically correct mapping across day-night cycles.
Resumo:
Critical to the research of urban morphologists is the availability of historical records that document the urban transformation of the study area. However, thus far little work has been done towards an empirical approach to the validation of archival data in this field. Outlined in this paper, therefore, is a new methodology for validating the accuracy of archival records and mapping data, accrued through the process of urban morphological research, so as to establish a reliable platform from which analysis can proceed. The paper particularly addresses the problems of inaccuracies in existing curated historical information, as well as errors in archival research by student assistants, which together give rise to unacceptable levels of uncertainty in the documentation. The paper discusses the problems relating to the reliability of historical information, demonstrates the importance of data verification in urban morphological research, and proposes a rigorous method for objective testing of collected archival data through the use of qualitative data analysis software.
Resumo:
This invention concerns the control of rotating excavation machinery, for instance to avoid collisions with obstacles. In a first aspect the invention is a control system for autonomous path planning in excavation machinery, comprising: A map generation subsystem to receive data from an array of disparate and complementary sensors to generate a 3-Dimensional digital terrain and obstacle map referenced to a coordinate frame related to the machine's geometry, during normal operation of the machine. An obstacle detection subsystem to find and identify obstacles in the digital terrain and obstacle map, and then to refine the map by identifying exclusion zones that are within reach of the machine during operation. A collision detection subsystem that uses knowledge of the machine's position and movements, as well as the digital terrain and obstacle map, to identify and predict possible collisions with itself or other obstacles, and then uses a forward motion planner to predict collisions in a planned path. And, a path planning subsystem that uses information from the other subsystems to vary planned paths to avoid obstacles and collisions. In other aspects the invention is excavation machinery including the control system; a method for control of excavation machinery; and firmware and software versions of the control system.
Resumo:
This paper presents a visual SLAM method for temporary satellite dropout navigation, here applied on fixed- wing aircraft. It is designed for flight altitudes beyond typical stereo ranges, but within the range of distance measurement sensors. The proposed visual SLAM method consists of a common localization step with monocular camera resectioning, and a mapping step which incorporates radar altimeter data for absolute scale estimation. With that, there will be no scale drift of the map and the estimated flight path. The method does not require simplifications like known landmarks and it is thus suitable for unknown and nearly arbitrary terrain. The method is tested with sensor datasets from a manned Cessna 172 aircraft. With 5% absolute scale error from radar measurements causing approximately 2-6% accumulation error over the flown distance, stable positioning is achieved over several minutes of flight time. The main limitations are flight altitudes above the radar range of 750 m where the monocular method will suffer from scale drift, and, depending on the flight speed, flights below 50 m where image processing gets difficult with a downwards-looking camera due to the high optical flow rates and the low image overlap.
Resumo:
This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.