53 resultados para femoral artery
em Queensland University of Technology - ePrints Archive
Resumo:
BACKGROUND.: Microvascular free tissue transfer has become increasingly popular in the reconstruction of head and neck defects, but it also has its disadvantages. Tissue engineering allows the generation of neo-tissue for implantation, but these tissues are often avascular. We propose to combine tissue-engineering techniques together with flap prefabrication techniques to generate a prefabricated vascularized soft tissue flap. METHODS: Human dermal fibroblasts (HDFs) labeled with fluorescein diacetate were static seeded onto polylactic-co-glycolic acid-collagen (PLGA-c) mesh. Controls were plain PLGA-c mesh. The femoral artery and vein of the nude rat was ligated and used as a vascular carrier for the constructs. After 4 weeks of implantation, the constructs were assessed by gross morphology, routine histology, Masson trichrome, and cell viability determined by green fluorescence. RESULTS: All the constructs maintained their initial shape and dimensions. Angiogenesis was evident in all the constructs with neo-capillary formation within the PLGA-c mesh seen. HDFs proliferated and filled the interyarn spaces of the PLGA-c mesh, while unseeded PLGA-c mesh remained relatively acellular. Cell tracer study indicated that the seeded HDFs remained viable and closely associated to remaining PLGA-c fibers. Collagen formation was more abundant in the constructs seeded with HDFs. CONCLUSIONS: PLGA-c, enveloped by a cell sheet composed of fibroblasts, can serve as a suitable scaffold for generation of a soft tissue flap. A ligated arteriovenous pedicle can serve as a vascular carrier for the generation of a tissue engineered vascularized flap.
Resumo:
In a recently described model for tissue engineering, an arteriovenous loop comprising the femoral artery and vein with interposed vein graft is fabricated in the groin of an adult male rat, placed inside a polycarbonate chamber, and incubated subcutaneously. New vascularized granulation tissue will generate on this loop for up to 12 weeks. In the study described in this paper three different extracellular matrices were investigated for their ability to accelerate the amount of tissue generated compared with a no-matrix control. Poly-D,L-lactic-co-glycolic acid (PLGA) produced the maximal weight of new tissue and vascularization and this peaked at two weeks, but regressed by four weeks. Matrigel was next best. It peaked at four weeks but by eight weeks it also had regressed. Fibrin (20 and 80 mg/ml), by contrast, did not integrate with the generating vascularized tissue and produced less weight and volume of tissue than controls without matrix. The limiting factors to growth appear to be the chamber size and the capacity of the neotissue to integrate with the matrix. Once the sides of the chamber are reached or tissue fails to integrate, encapsulation and regression follow. The intrinsic position of the blood supply within the neotissue has many advantages for tissue and organ engineering, such as ability to seed the construct with stem cells and microsurgically transfer new tissue to another site within the individual. In conclusion, this study has found that PLGA and Matrigel are the best matrices for the rapid growth of new vascularized tissue suitable for replantation or transplantation.
Resumo:
Background The accurate measurement of Cardiac output (CO) is vital in guiding the treatment of critically ill patients. Invasive or minimally invasive measurement of CO is not without inherent risks to the patient. Skilled Intensive Care Unit (ICU) nursing staff are in an ideal position to assess changes in CO following therapeutic measures. The USCOM (Ultrasonic Cardiac Output Monitor) device is a non-invasive CO monitor whose clinical utility and ease of use requires testing. Objectives To compare cardiac output measurement using a non-invasive ultrasonic device (USCOM) operated by a non-echocardiograhically trained ICU Registered Nurse (RN), with the conventional pulmonary artery catheter (PAC) using both thermodilution and Fick methods. Design Prospective observational study. Setting and participants Between April 2006 and March 2007, we evaluated 30 spontaneously breathing patients requiring PAC for assessment of heart failure and/or pulmonary hypertension at a tertiary level cardiothoracic hospital. Methods SCOM CO was compared with thermodilution measurements via PAC and CO estimated using a modified Fick equation. This catheter was inserted by a medical officer, and all USCOM measurements by a senior ICU nurse. Mean values, bias and precision, and mean percentage difference between measures were determined to compare methods. The Intra-Class Correlation statistic was also used to assess agreement. The USCOM time to measure was recorded to assess the learning curve for USCOM use performed by an ICU RN and a line of best fit demonstrated to describe the operator learning curve. Results In 24 of 30 (80%) patients studied, CO measures were obtained. In 6 of 30 (20%) patients, an adequate USCOM signal was not achieved. The mean difference (±standard deviation) between USCOM and PAC, USCOM and Fick, and Fick and PAC CO were small, −0.34 ± 0.52 L/min, −0.33 ± 0.90 L/min and −0.25 ± 0.63 L/min respectively across a range of outputs from 2.6 L/min to 7.2 L/min. The percent limits of agreement (LOA) for all measures were −34.6% to 17.8% for USCOM and PAC, −49.8% to 34.1% for USCOM and Fick and −36.4% to 23.7% for PAC and Fick. Signal acquisition time reduced on average by 0.6 min per measure to less than 10 min at the end of the study. Conclusions In 80% of our cohort, USCOM, PAC and Fick measures of CO all showed clinically acceptable agreement and the learning curve for operation of the non-invasive USCOM device by an ICU RN was found to be satisfactorily short. Further work is required in patients receiving positive pressure ventilation.
Resumo:
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.
Resumo:
The repair of large non-unions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause bone marrow stromal cells to lose their differentiation ability. To overcome these limitations, we have genetically engineered bone marrow stromal cells to constitutively overexpress the osteoblast specific transcription factor Runx2. In the present study, we examined Runx2-modified bone marrow stromal cells, delivered via poly(caprolactone) scaffolds loaded with type I collagen meshes, in critically-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds and empty defects. Runx2 expression in bone marrow stromal cells accelerated healing of critically-sized defects compared to unmodified bone marrow stromal cells and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects which may reduce recovery time and the need for external fixation of critically-sized defects.
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Background: Acute coronary syndromes are a major cause of mortality and morbidity. Objectives/Methods: The objective of this evaluation is to review the clinical trials of two new drugs being developed for the treatment of acute coronary syndromes. The first drug is the anti-coagulant otamixaban, and the trial compared otamixaban with unfractionated heparin and eptifibatide in acute coronary syndromes. The second drug is the anti-platelet ticagrelor, and the trial compared ticagrelor with clopidogrel in acute coronary syndromes. Results: In the SEPIA-ACS1 TIMI 42 trial, the primary efficacy endpoint occurred in 6.2% of subjects treated with unfractionated heparin and eptifibatide, and to a significantly lesser extent with otamixaban. In the PLATO trial, the primary efficacy endpoint had occurred less in the ticagrelor group (9.8%) than in the clopidogrel group (11.7%) at 12 months. Conclusions: Two new drugs for acute coronary syndromes, otamixaban and ticagrelor, have recently been shown to have benefits in subjects undergoing percutaneous interventions compared to the present standard regimens for this condition.