253 resultados para enzymatic complex
em Queensland University of Technology - ePrints Archive
Resumo:
Saccharification of sugarcane bagasse pretreated at the pilot-scale with different processes (in combination with steam-explosion) was evaluated. Maximum glucan conversion with Celluclast 1.5 L (15–25 FPU/g glucan) was in the following order: glycerol/HCl > HCl > H2SO4 > NaOH, with the glycerol system achieving ∼100% conversion. Surprisingly, the NaOH substrate achieved optimum saccharification with only 8 FPU/g glucan. Glucan conversions (3.6–6%) obtained with mixtures of endo-1,4-β-glucanase (EG) and β-glucosidase (βG) for the NaOH substrate were 2–6 times that of acid substrates. However, glucan conversions (15–60%) obtained with mixtures of cellobiohydrolase (CBH I) and βG on acidified glycerol substrate were 10–30% higher than those obtained for NaOH and acid substrates. The susceptibility of the substrates to enzymatic saccharification was explained by their physical and chemical attributes. Acidified glycerol pretreatment offers the opportunity to simplify the complexity of enzyme mixtures required for saccharification of lignocellulosics.
Resumo:
The application of spectroscopy to the study of contaminants in soils is important. Among the many contaminants is arsenic, which is highly labile and may leach to non-contaminated areas. Minerals of arsenate may form depending upon the availability of specific cations for example calcium and iron. Such minerals include carminite, pharmacosiderite and talmessite. Each of these arsenate minerals can be identified by its characteristic Raman spectrum enabling identification.
Complex Impedance Measurement During RF Catheter Ablation: A More Accurate Measure of Power Delivery
Resumo:
The research presented in this thesis addresses inherent problems in signaturebased intrusion detection systems (IDSs) operating in heterogeneous environments. The research proposes a solution to address the difficulties associated with multistep attack scenario specification and detection for such environments. The research has focused on two distinct problems: the representation of events derived from heterogeneous sources and multi-step attack specification and detection. The first part of the research investigates the application of an event abstraction model to event logs collected from a heterogeneous environment. The event abstraction model comprises a hierarchy of events derived from different log sources such as system audit data, application logs, captured network traffic, and intrusion detection system alerts. Unlike existing event abstraction models where low-level information may be discarded during the abstraction process, the event abstraction model presented in this work preserves all low-level information as well as providing high-level information in the form of abstract events. The event abstraction model presented in this work was designed independently of any particular IDS and thus may be used by any IDS, intrusion forensic tools, or monitoring tools. The second part of the research investigates the use of unification for multi-step attack scenario specification and detection. Multi-step attack scenarios are hard to specify and detect as they often involve the correlation of events from multiple sources which may be affected by time uncertainty. The unification algorithm provides a simple and straightforward scenario matching mechanism by using variable instantiation where variables represent events as defined in the event abstraction model. The third part of the research looks into the solution to address time uncertainty. Clock synchronisation is crucial for detecting multi-step attack scenarios which involve logs from multiple hosts. Issues involving time uncertainty have been largely neglected by intrusion detection research. The system presented in this research introduces two techniques for addressing time uncertainty issues: clock skew compensation and clock drift modelling using linear regression. An off-line IDS prototype for detecting multi-step attacks has been implemented. The prototype comprises two modules: implementation of the abstract event system architecture (AESA) and of the scenario detection module. The scenario detection module implements our signature language developed based on the Python programming language syntax and the unification-based scenario detection engine. The prototype has been evaluated using a publicly available dataset of real attack traffic and event logs and a synthetic dataset. The distinct features of the public dataset are the fact that it contains multi-step attacks which involve multiple hosts with clock skew and clock drift. These features allow us to demonstrate the application and the advantages of the contributions of this research. All instances of multi-step attacks in the dataset have been correctly identified even though there exists a significant clock skew and drift in the dataset. Future work identified by this research would be to develop a refined unification algorithm suitable for processing streams of events to enable an on-line detection. In terms of time uncertainty, identified future work would be to develop mechanisms which allows automatic clock skew and clock drift identification and correction. The immediate application of the research presented in this thesis is the framework of an off-line IDS which processes events from heterogeneous sources using abstraction and which can detect multi-step attack scenarios which may involve time uncertainty.
Resumo:
Engineering assets such as roads, rail, bridges and other forms of public works are vital to the effective functioning of societies {Herder, 2006 #128}. Proficient provision of this physical infrastructure is therefore one of the key activities of government {Lædre, 2006 #123}. In order to ensure engineering assets are procured and maintained on behalf of citizens, government needs to devise the appropriate policy and institutional architecture for this purpose. The changing institutional arrangements around the procurement of engineering assets are the focus of this paper. The paper describes and analyses the transition to new, more collaborative forms of procurement arrangements which are becoming increasingly prevalent in Australia and other OECD countries. Such fundamental shifts from competitive to more collaborative approaches to project governance can be viewed as a major transition in procurement system arrangements. In many ways such changes mirror the shift from New Public Management, with its emphasis on the use of market mechanisms to achieve efficiencies {Hood, 1991 #166}, towards more collaborative approaches to service delivery, such as those under network governance arrangements {Keast, 2007 #925}. However, just as traditional forms of procurement in a market context resulted in unexpected outcomes for industry, such as a fragmented industry afflicted by chronic litigation {Dubois, 2002 #9}, the change to more collaborative forms of procurement is unlikely to be a panacea to the problems of procurement, and may well also have unintended consequences. This paper argues that perspectives from complex adaptive systems (CAS) theory can contribute to the theory and practice of managing system transitions. In particular the concept of emergence provides a key theoretical construct to understand the aggregate effect that individual project governance arrangements can have upon the structure of specific industries, which in turn impact individual projects. Emergence is understood here as the macro structure that emerges out of the interaction of agents in the system {Holland, 1998 #100; Tang, 2006 #51}.
Resumo:
This chapter elucidates key ideas behind neurocomputational and ecological dynamics and perspectives of understanding the organisation of action in complex neurobiological systems. The need to study the close link between neurobiological systems and their environments (particularly their sensory and movement subsystems and the surrounding energy sources) is advocated. It is proposed how degeneracy in complex neurobiological systems provides the basis for functional variability in organisation of action. In such systems processes of cognition and action facilitate the specific interactions of each performer with particular task and environmental constraints.
Resumo:
Traditionally, the aquisition of skills and sport movement has been characterised by numerous repetitions of presumed model movement pattern to be acquired by learners. This approach has been questioned by research identifying the presence of individualised movement patterns and the low probability of occurrence of two identical movements within and between individuals. In contrast, the differential learning approach claims advantage for incurring variability in the learning process by adding stochastic perturbations during practice. These ideas are exemplified by data from a high jump experiment which compared the effectiveness of classical and a differential training approach with pre-post test design. Results showed clear advantages for the group with additional stochastic perturbation during the aquisition phase in comparison to classically trained athletes. Analogies to similar phenomenological effects in the neurobiological literature are discussed.