593 resultados para energy market
em Queensland University of Technology - ePrints Archive
Resumo:
This paper presents a series of operating schedules for Battery Energy Storage Companies (BESC) to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration. As individual market participants, BESC can bid in ancillary services markets in an Independent System Operator (ISO) and contribute towards frequency and voltage support in the grid. Recent development in batteries technologies and availability of the day-ahead spot market prices would make BESC economically feasible. Profit maximization of BESC is achieved by determining the optimum capacity of Energy Storage Systems (ESS) required for meeting spinning reserve requirements as well as peak shaving. Historic spot market prices and frequency deviations from Australia Energy Market Operator (AEMO) are used for numerical simulations and the economic benefits of BESC is considered reflecting various aspects in Australia’s National Electricity Markets (NEM).
Resumo:
In this article we introduce the term “energy polarization” to explain the politics of energy market reform in the Russian Duma. Our model tests the impact of regional energy production, party cohesion and ideology, and electoral mandate on the energy policy decisions of the Duma deputies (oil, gas, and electricity bills and resolution proposals) between 1994 and 2003. We find a strong divide between Single-Member District (SMD) and Proportional Representation (PR) deputies High statistical significance of gas production is demonstrated throughout the three Duma terms and shows Gazprom's key position in the post-Soviet Russian economy. Oil production is variably significant in the two first Dumas, when the main legislative debates on oil privatization occur. There is no constant left–right continuum, which is consistent with the deputies' proclaimed party ideology. The pro- and anti-reform poles observed in our Poole-based single dimensional scale are not necessarily connected with liberal and state-oriented regulatory policies, respectively. Party switching is a solid indicator of Russia's polarized legislative dynamics when it comes to energy sector reform.
Resumo:
The paper presents a demand side response scheme,which assists electricity consumers to proactively control own demands in such a way to deliberately avert congestion periods on the electrical network. The scheme allows shifting loads from peak to low demand periods in an attempt to flattening the national electricity requirement. The scheme can be concurrently used to accommodate the utilization of renewable energy sources,that might be available at user’s premises. In addition the scheme allows a full-capacity utilization of the available electrical infrastructure by organizing a wide-use of electric vehicles. The scheme is applicable in the Eastern and Southern States of Australia managed by the Australian Energy Market Operator. The results indicate the potential of the scheme to achieve energy savings and release capacity to accommodate renewable energy and electrical vehicle technologies.
Resumo:
This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.
Resumo:
This study investigates the price linkage among the US major energy sources, considering structural breaks in time series, to provide information for diversifying the US energy sources. We find that only a weak linkage sustains among crude oil, gasoline, heating oil, coal, natural gas, uranium and ethanol futures prices. This implies that the US major energy source markets are not integrated as one primary energy market. Our tests also reveal that uranium and ethanol futures prices have very weak linkages with other major energy source prices. This indicates that the US energy market is still at a stage where none of the probable alternative energy source markets are playing the role as substitute or complement markets for the fossil fuel energy markets.
Resumo:
Power transformers are one of the most important and costly equipment in power generation, transmission and distribution systems. Current average age of transformers in Australia is around 25 years and there is a strong economical tendency to use them up to 50 years or more. As the transformers operate, they get degraded due to different loading and environmental operating stressed conditions. In today‘s competitive energy market with the penetration of distributed energy sources, the transformers are stressed more with minimum required maintenance. The modern asset management program tries to increase the usage life time of power transformers with prognostic techniques using condition indicators. In the case of oil filled transformers, condition monitoring methods based on dissolved gas analysis, polarization studies, partial discharge studies, frequency response analysis studies to check the mechanical integrity, IR heat monitoring and other vibration monitoring techniques are in use. In the current research program, studies have been initiated to identify the degradation of insulating materials by the electrical relaxation technique known as dielectrometry. Aging leads to main degradation products like moisture and other oxidized products due to fluctuating thermal and electrical loading. By applying repetitive low frequency high voltage sine wave perturbations in the range of 100 to 200 V peak across available terminals of power transformer, the conductive and polarization parameters of insulation aging are identified. An in-house novel digital instrument is developed to record the low leakage response of repetitive polarization currents in three terminals configuration. The technique is tested with known three transformers of rating 5 kVA or more. The effects of stressing polarization voltage level, polarizing wave shapes and various terminal configurations provide characteristic aging relaxation information. By using different analyses, sensitive parameters of aging are identified and it is presented in this thesis.
Resumo:
Depleting fossil fuel resources and increased accumulation of greenhouse gas emissions are increasingly making electrical vehicles (EV) attractive option for the transportation sector. However uncontrolled random charging and discharging of EVs may aggravate the problems of an already stressed system during the peak demand and cause voltage problems during low demand. This paper develops a demand side response scheme for properly integrating EVs in the Electrical Network. The scheme enacted upon information on electricity market conditions regularly released by the Australian Energy Market Operator (AEMO) on the internet. The scheme adopts Internet relays and solid state switches to cycle charging and discharging of EVs. Due to the pending time-of-use and real-price programs, financial benefits will represent driving incentives to consumers to implement the scheme. A wide-scale dissemination of the scheme is expected to mitigate excessive peaks on the electrical network with all associated technical, economic and social benefits.
Resumo:
Creative Statement: “There are those who see Planet Earth as a gigantic living being, one that feeds and nurtures humanity and myriad other species – an entity that must be cared for. Then there are those who see it as a rock full of riches to be pilfered heedlessly in a short-term quest for over-abundance. This ‘cradle to grave’ mentality, it would seem, is taking its toll (unless you’re a virulent disbeliever in climate change). Why not, ask artists Priscilla Bracks and Gavin Sade, take a different approach? To this end they have set out on a near impossible task; to visualise the staggering quantity of carbon produced by Australia every year. Their eerie, glowing plastic cube resembles something straight out of Dr Who or The X Files. And, like the best science fiction, it has technical realities at its heart. Every One, Every Day tangibly illustrates our greenhouse gas output – its 27m3 volume is approximately the amount of green-house gas emitted per capita, daily. Every One, Every Dayis lit by an array of LED’s displaying light patterns representing energy use generated by data from the Australian Energy Market. Every One, Every Day was formed from recycled, polyethylene – used milk bottles – ‘lent’ to the artists by a Visy recycling facility. At the end of the Vivid Festival this plastic will be returned to Visy, where it will re-enter the stream of ‘technical nutrients.’ Could we make another world? One that emulates the continuing cycles of nature? One that uses our ‘technical nutrients’ such as plastic and steel in continual cycles, just like a deciduous tree dropping leaves to compost itself and keep it’s roots warm and moist?” (Ashleigh Crawford. Melbourne – April, 2013) Artistic Research Statement: The research focus of this work is on exploring how to represent complex statistics and data at a human scale, and how produce a work where a large percentage of the materials could be recycled. The surface of Every One, Every Day is clad in tiles made from polyethylene, from primarily recycled milk bottles, ‘lent’ to the artists by the Visy recycling facility in Sydney. The tiles will be returned to Visy for recycling. As such the work can be viewed as an intervention in the industrial ecology of polyethylene, and in the process demonstrates how to sustain cycles of technical materials – by taking the output of a recycling facility back to a manufacturer to produce usable materials. In terms of data visualisation, Every One, Every Day takes the form of a cube with a volume of 27 cubic meters. The annual per capita emissions figures for Australia are cited as ranging between 18 to 25 tons. Assuming the lower figure, 18tons per capital annually, the 27 cubic meters represents approximately one day per capita of CO2 emissions – where CO2 is a gas at 15C and 1 atmosphere of pressure. The work also explores real time data visualisation by using an array of 600 controllable LEDs inside the cube. Illumination patterns are derived from a real time data from the Australian Energy Market, using the dispatch interval price and demand graph for New South Wales. The two variables of demand and price are mapped to properties of the illumination - hue, brightness, movement, frequency etc. The research underpinning the project spanned industrial ecology to data visualization and public art practices. The result is that Every One, Every Day is one of the first public artworks that successfully bring together materials, physical form, and real time data representation in a unified whole.
Resumo:
The aims of this project is to develop demand side response model which assists electricity consumers who are exposed to the market price through aggregator to manage the air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimise the energy cost caused by the air-conditioning load considering the electricity market price and network overload. The model is tested with selected characteristics of the room, Queensland electricity market data from Australian Energy Market Operator and data from the Bureau of Statistics on temperatures in Brisbane, during weekdays on hot days from 2011 - 2012.
Resumo:
The aim of this work is to develop a demand-side-response model, which assists electricity consumers exposed to the market price to independently and proactively manage air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimize the energy cost caused by the air conditioning load considering to several cases e.g. normal price, spike price, and the probability of a price spike case. This model also investigated how air-conditioning applies a pre-cooling method when there is a substantial risk of a price spike. The results indicate the potential of the scheme to achieve financial benefits for consumers and target the best economic performance for electrical generation distribution and transmission. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics regarding hot days from 2011 to 2012.
Resumo:
The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.
Resumo:
In this paper, we analyze the relationships among oil prices, clean energy stock prices, and technology stock prices, endogenously controlling for structural changes in the market. To this end, we apply Markov-switching vector autoregressive models to the economic system consisting of oil prices, clean energy and technology stock prices, and interest rates. The results indicate that there was a structural change in late 2007, a period in which there was a significant increase in the price of oil. In contrast to the previous studies, we find a positive relationship between oil prices and clean energy prices after structural breaks. There also appears to be a similarity in terms of the market response to both clean energy stock prices and technology stock prices. © 2013 Elsevier B.V.
Resumo:
Purpose – The purpose of this paper is to examine the buyer awareness and acceptance of environmental and energy efficiency measures in the New Zealand residential property markets. This study aims to provide a greater understanding of consumer behaviour in the residential property market in relation to green housing issues ---------- Design/methodology/approach – The paper is based on an extensive survey of Christchurch real estate offices and was designed to gather data on the factors that were considered important by buyers in the residential property market. The survey was designed to allow these factors to be analysed on a socio-economic basis and to compare buyer behaviour based on property values. ---------- Findings – The results show that regardless of income levels, buyers still consider that the most important factor in the house purchase decision is the location of the property and price. Although the awareness of green housing issues and energy efficiency in housing is growing in the residential property market, it is only a major consideration for young and older buyers in the high income brackets and is only of some importance for all other buyer sectors of the residential property market. Many of the voluntary measures introduced by Governments to improve the energy efficiency of residential housing are still not considered important by buyers, indicating that a more mandatory approach may have to be undertaken to improve energy efficiency in the established housing market, as these measures are not valued by the buyer. ---------- Originality/value – The paper confirms the variations in real estate buyer behaviour across the full range of residential property markets and the acceptance and awareness of green housing issues and measures. These results would be applicable to most established and transparent residential property markets.
Resumo:
Despite the general evolution and broadening of the scope of the concept of infrastructure in many other sectors, the energy sector has maintained the same narrow boundaries for over 80 years. Energy infrastructure is still generally restricted in meaning to the transmission and distribution networks of electricity and, to some extent, gas. This is especially true in the urban development context. This early 20th century system is struggling to meet community expectations that the industry itself created and fostered for many decades. The relentless growth in demand and changing political, economic and environmental challenges require a shift from the traditional ‘predict and provide’ approach to infrastructure which is no longer economically or environmentally viable. Market deregulation and a raft of demand and supply side management strategies have failed to curb society’s addiction to the commodity of electricity. None of these responses has addressed the fundamental problem. This chapter presents an argument for the need for a new paradigm. Going beyond peripheral energy efficiency measures and the substitution of fossil fuels with renewables, it outlines a new approach to the provision of energy services in the context of 21st century urban environments.
Resumo:
Climate change mitigation is driving demand for energy-efficient and environmentally conscious commercial buildings in Australia. In the Australian subtropics, high rainfall, warm weather and humidity present unique challenges and opportunities for the architects tasked with designing eco-sensitive projects. The case of the James Street Market in Brisbane’s Fortitude Valley shows that climate-responsive design is an effective approach for reducing the environmental impact of commercial developments. The James Street Market combines climate-responsiveness, environmentally sensitive design strategies and smart planning to create a more sustainable retail precinct. This paper details the design strategies featured in the James Street Market, the project that kicked off a renaissance in climate-responsive commercial building design in Brisbane.