103 resultados para electrodes
em Queensland University of Technology - ePrints Archive
Resumo:
A mathematical model is developed to simulate the discharge of a LiFePO4 cathode. This model contains 3 size scales, which match with experimental observations present in the literature on the multi-scale nature of LiFePO4 material. A shrinking-core is used on the smallest scale to represent the phase-transition of LiFePO4 during discharge. The model is then validated against existing experimental data and this validated model is then used to investigate parameters that influence active material utilisation. Specifically the size and composition of agglomerates of LiFePO4 crystals is discussed, and we investigate and quantify the relative effects that the ionic and electronic conductivities within the oxide have on oxide utilisation. We find that agglomerates of crystals can be tolerated under low discharge rates. The role of the electrolyte in limiting (cathodic) discharge is also discussed, and we show that electrolyte transport does limit performance at high discharge rates, confirming the conclusions of recent literature.
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.
Resumo:
Polycrystalline gold electrodes of the kind that are routinely used in analysis and catalysis in aqueous media are often regarded as exhibiting relatively simple double-layer charging/discharging and monolayer oxide formation/ removal in the positive potential region. Application of the large amplitude Fourier transformed alternating current (FT-ac) voltammetric technique that allows the faradaic current contribution of fast electron-transfer processes to be emphasized in the higher harmonic components has revealed the presence of well-defined faradaic (premonolayer oxidation) processes at positive potentials in the double-layer region in acidic and basic media which are enhanced by electrochemical activation. These underlying quasi-reversible interfacial electron-transfer processes may mediate the course of electrocatalytic oxidation reactions of hydrazine, ethylene glycol, and glucose on gold electrodes in aqueous media. The observed responses support key assumptions associated with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis.
Resumo:
The electrochemical reduction of TCNQ to TCNQ•- in acetonitrile in the presence of [Cu(MeCN)4]+ has been undertaken at boron-doped diamond (BDD) and indium tin oxide (ITO) electrodes. The nucleation and growth process at BDD is similar to that reported previously at metal electrodes. At an ITO electrode, the electrocrystallization of more strongly adhered, larger, branched, needle-shaped phase I CuTCNQ crystals is detected under potential step conditions and also when the potential is cycled over the potential range of 0.7 to −0.1 V versus Ag/AgCl (3 M KCl). Video imaging can be used at optically transparent ITO electrodes to monitor the growth stage of the very large branched crystals formed during the course of electrochemical experiments. Both in situ video imaging and ex situ X-ray diffraction and scanning electron microscopy (SEM) data are consistent with the nucleation of CuTCNQ taking place at a discrete number of preferred sites on the ITO surface. At BDD electrodes, ex situ optical images show that the preferential growth of CuTCNQ occurs at the more highly conducting boron-rich areas of the electrode, within which there are preferred sites for CuTCNQ formation.
Resumo:
Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using Ru(CN) 4− 6 (aq), ferrocene methanol (FcMeOH), Fe(CN) 3− 6 (aq) and Ru(NH 3) 3+ 6 (aq), approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and Fe(CN) 3− 6 (aq) as mediators, and the use of Ru(NH 3) 3+ 6(aq) results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators Fe(CN) 3− 6(aq) and Fe(CN) 4− 6(aq). In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.
Electrochemical fabrication of metallic nanostructured electrodes for electroanalytical applications
Resumo:
The use of electrodeposited metal-based nanostructures for electroanalytical applications has recently received widespread attention. There are several approaches to creating nanostructured materials through electrochemical routes that include facile electrodeposition at either untreated or modified electrodes, or through the use of physical or chemical templating methods. This allows the shape, size and composition of the nanomaterial to be readily tuned for the application of interest. The use of such materials is particularly suited to electroanalytical applications. In this mini-review an overview of recently developed nanostructured materials developed through electrochemical routes is presented as well as their electroanalytical applications in areas of biological and environmental importance.
Resumo:
The effect of storage time on the cyclability of lithium electrodes in an ionic liquid electrolyte, namely 0.5 m LiBF4 in N-methyl-N-propyl pyrrolidinium bis(fluorosulfonyl)imide, [C3mpyr+][FSI–], was investigated. A chemical interaction was observed which is time dependent and results in a morphology change of the Li surface due to build up of passivation products over a 12-day period. The formation of this layer significantly impacts on the Li electrode resistance before cycling and the charging/discharging process for symmetrical Li|0.5 m LiBF4 in [C3mpyr+][FSI–]|Li coin cells. Indeed it was found that introducing a rest period between cycling, and thereby allowing the chemical interaction between the Li electrode and electrolyte to take place, also impacted on the charging/discharging process. For all Li surface treatments the electrode resistance decreased after cycling and was due to significant structural rearrangement of the surface layer. These results suggest that careful electrode pretreatment in a real battery system will be required before operation.
Resumo:
The effect of extended cycling on lithium metal electrodes has been investigated in an ionic liquid electrolyte. Cycling studies were conducted on lithium metal electrodes in a symmetrical Li|electrolyte|Li coin cell configuration for 5000 charge–discharge cycles at a current density of 0.1 mA cm− 2. The voltage–time plots show evidence of some unstable behavior which is attributed to surface reorganization. No evidence for lithium dendrite induced short circuiting was observed. SEM imaging showed morphology changes had occurred but no evidence of needle-like dendrite based growth was found after 5000 charge–discharge cycles. This study suggests that ionic liquid electrolytes can enable next generation battery technologies such as rechargeable lithium-air, in which a safe, reversible lithium electrode is a crucial component.
Resumo:
A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response–concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123–1.27 ppmv (1.02–10.55 mg m − 3), with a detection limit of 2.4 ppbv (0.02 mg m − 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m − 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.
Resumo:
Vertical graphene nanosheets (VGNS) hold great promise for high-performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three-dimensional, open network structure. However, it remains challenging to materialise the VGNS-based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non-cost effective way of fabrication. Here we use a single-step, fast, scalable, and environmentally-benign plasma-enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder-free supercapacitor electrodes exhibit high specific capacitance up to 230 F g−1 at a scan rate of 10 mV s−1 and >99% capacitance retention after 1,500 charge-discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano-architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma-unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.
Resumo:
A novel approach to large-scale production of high-quality graphene flakes in magnetically-enhanced arc discharges between carbon electrodes is reported. A non-uniform magnetic field is used to control the growth and deposition zones, where the Y-Ni catalyst experiences a transition to the ferromagnetic state, which in turn leads to the graphene deposition in a collection area. The quality of the produced material is characterized by the SEM, TEM, AFM, and Raman techniques. The proposed growth mechanism is supported by the nucleation and growth model.