4 resultados para dyke
em Queensland University of Technology - ePrints Archive
Resumo:
This project investigates the integration of Information Communication Technologies (ICTs) into educational settings by closely looking at the uptake of the perceived affordances offered by ICTs by students enrolled in a French language course at Queensland University of Technology. This cross-disciplinary research uses the theoretical concepts of: Ecological Psychology (Gibson, 1979; Good, 2007; Reed, 1996); Ecological Linguistics (Greeno, 1994; Leather & van Dam, 2003; van Lier 2000, 2003, 2004a, 2004b); Design (Norman, 1988, 1999); Software Design/ Human-Computer Interaction (Hartson, 2003; McGrenere & Ho, 2000); Learning Design (Conole & Dyke, 2004a, 2004b; Laurillard et al. 2000;); Education (Kirschner, 2002; Salomon, 1993; Wijekumar et al., 2006) and Educational Psychology (Greeno, 1994). In order to investigate this subject, the following research questions, rooted in the theoretical foundations of the thesis, were formulated: (1) What are the learners’ attitudes towards the ICT tools used in the project?; (2) What are the affordances offered by ICTs used in a specific French language course at university level from the perspective of the teacher and from the perspective of language learners?; (3) What affordances offered by ICT tools used by the teacher within the specific teaching and learning environment have been taken up by learners?; and (4) What factors influence the uptake by learners of the affordances created by ICT tools used by the teacher within the specific teaching and learning environment? The teaching phase of this project, conducted between 2006 and 2008, used Action Research procedures (Hopkins, 2002; McNiff & Whitehead, 2002; van Lier 1994) as a research framework. The data were collected using the following combination of qualitative and quantitative methods: (1) questionnaires administered to students (Hopkins, 2002; McNiff & Whitehead, 2002) using Likert-scale questions, open questions, yes/no questions; (2) partnership classroom observations of research participants conducted by Research Participant Advocates (Hopkins, 2002; McNiff & Whitehead, 2002); and (3) a focus group with volunteering students who participated in the unit (semi-structured interview) (Hopkins, 2002; McNiff & Whitehead, 2002). The data analysis confirms the importance of a careful examination of the teaching and learning environment and reveals differences in the ways in which the opportunities for an action offered by the ICTs were perceived by teacher and students, which impacted on the uptake of affordances. The author applied the model of affordance, as described by Good (2007), to explain these differences and to investigate their consequences. In conclusion, the teacher-researcher considers that the discrepancies in perceiving the affordances result from the disparities between the frames of reference and the functional contexts of the teacher-researcher and students. Based on the results of the data analysis, a series of recommendations is formulated supporting calls for careful analysis of frames of reference and the functional contexts of all participants in the learning and teaching process. The author also suggests a modified model of affordance, outlining the important characteristics of its constituents.
Resumo:
The Jericho kimberlite (173.1. ±. 1.3. Ma) is a small (~. 130. ×. 70. m), multi-vent system that preserves products from deep (>. 1. km?) portions of kimberlite vents. Pit mapping, drill core examination, petrographic study, image analysis of olivine crystals (grain size distributions and shape studies), and compositional and mineralogical studies, are used to reconstruct processes from near-surface magma ascent to kimberlite emplacement and alteration. The Jericho kimberlite formed by multiple eruptions through an Archean granodiorite batholith that was overlain by mid-Devonian limestones ~. 1. km in thickness. Kimberlite magma ascended through granodiorite basement by dyke propagation but ascended through limestone, at least in part, by locally brecciating the host rocks. After the first explosive breakthrough to surface, vent deepening and widening occurred by the erosive forces of the waxing phase of the eruption, by gravitationally induced failures as portions of the vent margins slid into the vent and, in the deeper portions of the vent (>. 1. km), by scaling, as thin slabs burst from the walls into the vent. At currently exposed levels, coherent kimberlite (CK) dykes (<. 40. cm thick) are found to the north and south of the vent complex and represent the earliest preserved in-situ products of Jericho magmatism. Timing of CK emplacement on the eastern side of the vent complex is unclear; some thick CK (15-20. m) may have been emplaced after the central vent was formed. Explosive eruptive products are preserved in four partially overlapping vents that are roughly aligned along strike with the coherent kimberlite dyke. The volcaniclastic kimberlite (VK) facies are massive and poorly sorted, with matrix- to clast-supported textures. The VK facies fragmented by dry, volatile-driven processes and were emplaced by eruption column collapse back into the volcanic vents. The first explosive products, poorly preserved because of partial destruction by later eruptions, are found in the central-east vent and were formed by eruption column collapse after the vent was largely cleared of country rock debris. The next active vent was either the north or south vent. Collapse of the eruption column, linked to a vent widening episode, resulted in coeval avalanching of pipe margin walls into the north vent, forming interstratified lenses of country rock-rich boulder breccias in finer-grained volcaniclastic kimberlite. South vent kimberlite has similar characteristics to kimberlite of the north vent and likely formed by similar processes. The final eruptive phase formed olivine-rich and moderately sorted deposits of the central vent. Better sorting is attributed to recycling of kimberlite debris by multiple eruptions through the unconsolidated volcaniclastic pile and associated collapse events. Post-emplacement alteration varies in intensity, but in all cases, has overprinted the primary groundmass and matrix, in CK and VK, respectively. Erosion has since removed all limestone cover.
Resumo:
The paper presents data on petrology, bulk rock and mineral compositions, and textural classification of the Middle Jurassic Jericho kimberlite (Slave craton, Canada). The kimberlite was emplaced as three steep-sided pipes in granite that was overlain by limestones and minor soft sediments. The pipes are infilled with hypabyssal and pyroclastic kimberlites and connected to a satellite pipe by a dyke. The Jericho kimberlite is classified as a Group Ia, lacking groundmass tetraferriphlogopite and containing monticellite pseudomorphs. The kimberlite formed, during several consecutive emplacement events of compositionally different batches of kimberlite magma. Core-logging and thin-section observations identified at least two phases of hypabyssal kimberlites and three phases of pyroclastic kimberlites. Hypabyssal kimberlites intruded as a main dyke (HK1) and as late small-volume aphanitic and vesicular dykes. Massive pyroclastic kimberlite (MPK1) predominantly filled the northern and southern lobes of the pipe and formed from magma different from the HK1 magma. The MPK1 magma crystallized Ti-, Fe-, and Cr-rich phlogopite without rims of barian phlogopite, and clinopyroxene and spinel without atoll structures. MPK1 textures, superficially reminiscent of tuffisitic kimberlite, are caused by pervasive contamination by granite xenoliths. The next explosive events filled the central lobe with two varieties of pyroclastic kimberlite: (1) massive and (2) weakly bedded, normally graded pyroclastic kimberlite. The geology of the Jericho pipe differs from the geology of South African or the Prairie kimberlites, but may resemble Lac de Gras pipes, in which deeper erosion removed upper fades of resedimented kimberlites.