13 resultados para droughts

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We estimate the cost of droughts by matching rainfall data with individual life satisfaction. Our context is Australia over the period 2001 to 2004, which included a particularly severe drought. Using fixed-effect models, we find that a drought in spring has a detrimental effect on life satisfaction equivalent to an annual reduction in income of A$18,000. This effect, however, is only found for individuals living in rural areas. Using our estimates, we calculate that the predicted doubling of the frequency of spring droughts will lead to the equivalent loss in life satisfaction of just over 1% of GDP annually.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key resource areas (KRAs), defined as dry season foraging zones for herbivores, were studied relative to the more extensive outlying rangeland areas (non-KRAs) in Kenya. Field surveys with pastoralists, ranchers, scientists and government officials delineated KRAs on the ground. Identified KRAs were mapped based on global positioning and local experts' information on KRAs accessibility and ecological attributes. Using the map of known KRAs and non-KRAs, we examined characteristics of soils, climate, topography, land use/cover attributes at KRAs relative to non-KRAs. How and why do some areas (KRAs) support herbivores during droughts when forage is scarce in other areas of the landscape? We hypothesized that KRAs have fundamental ecological and socially determined attributes that enable them to provide forage during critical times and we sought to characterize some of those attributes in this study. At the landscape level, KRAs took different forms based on forage availability during the dry season but generally occurred in locations of the landscape with aseasonal water availability and/or difficult to access areas during wet season forage abundance. Greenness trends for KRAs versus non-KRAs were evaluated with a 22-year dataset of Normalized Difference Vegetation Index (NDVI). Field surveys of KRAs provided qualitative information on KRAs as dry season foraging zones. At the scale of the study, soil attributes did not significantly differ for KRAs compared to non-KRAs. Slopes of KRA were generally steeper compared to non-KRAs and elevation was higher at KRAs. Field survey respondents indicated that animals and humans generally avoid difficult to access hilly areas using them only when all other easily accessible rangeland is depleted of forage during droughts. Understanding the nature of KRAs will support identification, protection and restoration of critical forage hotspots for herbivores by strengthening rangeland inventory, monitoring, policy formulation, and conservation efforts to improve habitats and human welfare. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australia is the driest inhabited continent in the world and persisting droughts have triggered a move toward sensible and sustainable water consumption. Understanding how and where water is consumed in households enables streamlined development of demand management programs and efficient engineering of water infrastructure. End use water consumption analysis is required to gain necessary empirical data of how and where water is consumed. Several end use water consumption studies have been conducted within Australia and around the world with varying results produced. This pilot study paper provides preliminary data from the Gold Coast Watersaver End Use Project which is currently underway. Specifically, the paper includes water end use category volumetric and percentage break downs for 18 single and 32 dual reticulated homes on the Gold Coast (i.e. 50 in total). Moreover, a comparitive analysis between each of the individual households water end use levels is discussed along with other national studies previously completed. The paper finishes with an overview of the greater 200 home end use study conducted on the Gold Coast and its key deliverables and research outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the world’s population is growing, so is the demand for agricultural products. However, natural nitrogen (N) fixation and phosphorus (P) availability cannot sustain the rising agricultural production, thus, the application of N and P fertilisers as additional nutrient sources is common. It is those anthropogenic activities that can contribute high amounts of organic and inorganic nutrients to both surface and groundwaters resulting in degradation of water quality and a possible reduction of aquatic life. In addition, runoff and sewage from urban and residential areas can contain high amounts of inorganic and organic nutrients which may also affect water quality. For example, blooms of the cyanobacterium Lyngbya majuscula along the coastline of southeast Queensland are an indicator of at least short term decreases of water quality. Although Australian catchments, including those with intensive forms of land use, show in general a low export of nutrients compared to North American and European catchments, certain land use practices may still have a detrimental effect on the coastal environment. Numerous studies are reported on nutrient cycling and associated processes on a catchment scale in the Northern Hemisphere. Comparable studies in Australia, in particular in subtropical regions are, however, limited and there is a paucity in the data, in particular for inorganic and organic forms of nitrogen and phosphorus; these nutrients are important limiting factors in surface waters to promote algal blooms. Therefore, the monitoring of N and P and understanding the sources and pathways of these nutrients within a catchment is important in coastal zone management. Although Australia is the driest continent, in subtropical regions such as southeast Queensland, rainfall patterns have a significant effect on runoff and thus the nutrient cycle at a catchment scale. Increasingly, these rainfall patterns are becoming variable. The monitoring of these climatic conditions and the hydrological response of agricultural catchments is therefore also important to reduce the anthropogenic effects on surface and groundwater quality. This study consists of an integrated hydrological–hydrochemical approach that assesses N and P in an environment with multiple land uses. The main aim is to determine the nutrient cycle within a representative coastal catchment in southeast Queensland, the Elimbah Creek catchment. In particular, the investigation confirms the influence associated with forestry and agriculture on N and P forms, sources, distribution and fate in the surface and groundwaters of this subtropical setting. In addition, the study determines whether N and P are subject to transport into the adjacent estuary and thus into the marine environment; also considered is the effect of local topography, soils and geology on N and P sources and distribution. The thesis is structured on four components individually reported. The first paper determines the controls of catchment settings and processes on stream water, riverbank sediment, and shallow groundwater N and P concentrations, in particular during the extended dry conditions that were encountered during the study. Temporal and spatial factors such as seasonal changes, soil character, land use and catchment morphology are considered as well as their effect on controls over distributions of N and P in surface waters and associated groundwater. A total number of 30 surface and 13 shallow groundwater sampling sites were established throughout the catchment to represent dominant soil types and the land use upstream of each sampling location. Sampling comprises five rounds and was conducted over one year between October 2008 and November 2009. Surface water and groundwater samples were analysed for all major dissolved inorganic forms of N and for total N. Phosphorus was determined in the form of dissolved reactive P (predominantly orthophosphate) and total P. In addition, extracts of stream bank sediments and soil grab samples were analysed for these N and P species. Findings show that major storm events, in particular after long periods of drought conditions, are the driving force of N cycling. This is expressed by higher inorganic N concentrations in the agricultural subcatchment compared to the forested subcatchment. Nitrate N is the dominant inorganic form of N in both the surface and groundwaters and values are significantly higher in the groundwaters. Concentrations in the surface water range from 0.03 to 0.34 mg N L..1; organic N concentrations are considerably higher (average range: 0.33 to 0.85 mg N L..1), in particular in the forested subcatchment. Average NO3-N in the groundwater has a range of 0.39 to 2.08 mg N L..1, and organic N averages between 0.07 and 0.3 mg N L..1. The stream bank sediments are dominated by organic N (range: 0.53 to 0.65 mg N L..1), and the dominant inorganic form of N is NH4-N with values ranging between 0.38 and 0.41 mg N L..1. Topography and soils, however, were not to have a significant effect on N and P concentrations in waters. Detectable phosphorus in the surface and groundwaters of the catchment is limited to several locations typically in the proximity of areas with intensive animal use; in soil and sediments, P is negligible. In the second paper, the stable isotopes of N (14N/15N) and H2O (16O/18O and 2H/H) in surface and groundwaters are used to identify sources of dissolved inorganic and organic N in these waters, and to determine their pathways within the catchment; specific emphasis is placed on the relation of forestry and agriculture. Forestry is predominantly concentrated in the northern subcatchment (Beerburrum Creek) while agriculture is mainly found in the southern subcatchment (Six Mile Creek). Results show that agriculture (horticulture, crops, grazing) is the main source of inorganic N in the surface waters of the agricultural subcatchment, and their isotopic signature shows a close link to evaporation processes that may occur during water storage in farm dams that are used for irrigation. Groundwaters are subject to denitrification processes that may result in reduced dissolved inorganic N concentrations. Soil organic matter delivers most of the inorganic N to the surface water in the forested subcatchment. Here, precipitation and subsequently runoff is the main source of the surface waters. Groundwater in this area is affected by agricultural processes. The findings also show that the catchment can attenuate the effects of anthropogenic land use on surface water quality. Riparian strips of natural remnant vegetation, commonly 50 to 100 m in width, act as buffer zones along the drainage lines in the catchment and remove inorganic N from the soil water before it enters the creek. These riparian buffer zones are common in most agricultural catchments of southeast Queensland and are indicated to reduce the impact of agriculture on stream water quality and subsequently on the estuary and marine environments. This reduction is expressed by a significant decrease in DIN concentrations from 1.6 mg N L..1 to 0.09 mg N L..1, and a decrease in the �15N signatures from upstream surface water locations downstream to the outlet of the agricultural subcatchment. Further testing is, however, necessary to confirm these processes. Most importantly, the amount of N that is transported to the adjacent estuary is shown to be negligible. The third and fourth components of the thesis use a hydrological catchment model approach to determine the water balance of the Elimbah Creek catchment. The model is then used to simulate the effects of land use on the water balance and nutrient loads of the study area. The tool that is used is the internationally widely applied Soil and Water Assessment Tool (SWAT). Knowledge about the water cycle of a catchment is imperative in nutrient studies as processes such as rainfall, surface runoff, soil infiltration and routing of water through the drainage system are the driving forces of the catchment nutrient cycle. Long-term information about discharge volumes of the creeks and rivers do, however, not exist for a number of agricultural catchments in southeast Queensland, and such information is necessary to calibrate and validate numerical models. Therefore, a two-step modelling approach was used to calibrate and validate parameters values from a near-by gauged reference catchment as starting values for the ungauged Elimbah Creek catchment. Transposing monthly calibrated and validated parameter values from the reference catchment to the ungauged catchment significantly improved model performance showing that the hydrological model of the catchment of interest is a strong predictor of the water water balance. The model efficiency coefficient EF shows that 94% of the simulated discharge matches the observed flow whereas only 54% of the observed streamflow was simulated by the SWAT model prior to using the validated values from the reference catchment. In addition, the hydrological model confirmed that total surface runoff contributes the majority of flow to the surface water in the catchment (65%). Only a small proportion of the water in the creek is contributed by total base-flow (35%). This finding supports the results of the stable isotopes 16O/18O and 2H/H, which show the main source of water in the creeks is either from local precipitation or irrigation waters delivered by surface runoff; a contribution from the groundwater (baseflow) to the creeks could not be identified using 16O/18O and 2H/H. In addition, the SWAT model calculated that around 68% of the rainfall occurring in the catchment is lost through evapotranspiration reflecting the prevailing long-term drought conditions that were observed prior and during the study. Stream discharge from the forested subcatchment was an order of magnitude lower than discharge from the agricultural Six Mile Creek subcatchment. A change in land use from forestry to agriculture did not significantly change the catchment water balance, however, nutrient loads increased considerably. Conversely, a simulated change from agriculture to forestry resulted in a significant decrease of nitrogen loads. The findings of the thesis and the approach used are shown to be of value to catchment water quality monitoring on a wider scale, in particular the implications of mixed land use on nutrient forms, distributions and concentrations. The study confirms that in the tropics and subtropics the water balance is affected by extended dry periods and seasonal rainfall with intensive storm events. In particular, the comprehensive data set of inorganic and organic N and P forms in the surface and groundwaters of this subtropical setting acquired during the one year sampling program may be used in similar catchment hydrological studies where these detailed information is missing. Also, the study concludes that riparian buffer zones along the catchment drainage system attenuate the transport of nitrogen from agricultural sources in the surface water. Concentrations of N decreased from upstream to downstream locations and were negligible at the outlet of the catchment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Oceania region is an area particularly prone to natural disasters such as cyclones, tsunamis, floods, droughts, earthquakes and volcanic eruptions. Many of the nations in the region are Small Island Developing States (SIDS), yet even within wealthy states such as Australia and New Zealand there are groups which are vulnerable to disaster. Vulnerability to natural disaster can be understood in human rights terms, as natural disasters threaten the enjoyment of a number of rights which are guaranteed under international law, including rights to health, housing, food, water and even the right to life itself. The impacts of climate change threaten to exacerbate these vulnerabilities, yet, despite the foreseeability of further natural disasters as a result of climate change, there currently exists no comprehensive international framework for disaster response offering practical and/or legally reliable mechanisms to assist at‐risk states and communities. This paper sets out to explore the human rights issues presented by natural disasters and examine the extent to which these issues can be addressed by disaster response frameworks at the international, regional and national levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natural disasters incident that frequently hit Indonesia are floods, severe droughts, tsunamis, earth-quakes, volcano, eruptions, landslides, windstorm and forest fires. The impact of those natural disasters are significantly severe and affecting the quality of life of the community due to the breakdown of the public as-sets as one source to deliver public services. This paper is aimed to emphasis the importance of natural disaster risk-informed in relation to public asset management in Indonesian Central Government, particularly in asset planning stage where asset decision is made as the gate into the whole public asset management processes. A Case study in the Ministry of Finance Indonesia as the central government public asset manager and in 5 (five) line ministries/governmental agencies as public asset users was used as the approach to achieved the research objective. The case study devoured three data collection techniques i.e. interviews, observations and document archival which will be analysed by a content analysis approach. The result of the study indicates that Indonesian geographical position exposing many of public infra-structure assets as a high vulnerability to natural disasters. Information on natural-disaster trends and predictions to identify and measure the risks are available, however, such information are not utilise and integrated to the process of public infrastructure asset planning as the gate to the whole public asset management processes. Therefore, in order to accommodate and incorporate this natural disaster risk-information into public asset management processes, particularly in public asset planning, a public asset performance measurements framework should be adopted and applied in the process as one sources in making decision for infrastructure asset planning. Findings from this study provide useful input for the Ministry of Finance as public asset manager, scholars and private asset management practitioners in Indonesia to establish natural disaster risks awareness in public infrastructure asset management processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an approach to assess the resilience of a water supply system under the impacts of climate change. Changes to climate characteristics such as rainfall, evapotranspiration and temperature can result in changes to the global hydrological cycle and thereby adversely impact on the ability of water supply systems to meet service standards in the future. Changes to the frequency and characteristics of floods and droughts as well as the quality of water provided by groundwater and surface water resources are the other consequences of climate change that will affect water supply system functionality. The extent and significance of these changes underline the necessity for assessing the future functionality of water supply systems under the impacts of climate change. Resilience can be a tool for assessing the ability of a water supply system to meet service standards under the future climate conditions. The study approach is based on defining resilience as the ability of a system to absorb pressure without going into failure state as well as its ability to achieve an acceptable level of function quickly after failure. In order to present this definition in the form of a mathematical function, a surrogate measure of resilience has been proposed in this paper. In addition, a step-by-step approach to estimate resilience of water storage reservoirs is presented. This approach will enable a comprehensive understanding of the functioning of a water storage reservoir under future climate scenarios and can also be a robust tool to predict future challenges faced by water supply systems under the consequence of climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is expected to increase earth’s temperatures and consequently result in more frequent extreme weather events such as cyclones, storms, droughts and floods and rising global sea levels. This phenomenon will affect all assets. This paper discusses the impact of climate change and its consequences on public buildings. Public building management encompasses the building life cycle from planning, procurement, operation, repair and maintenance and building disposal. This paper recommends climate change adaptation strategies to be integrated into public building management. The roles and responsibilities of asset managers and users are discussed within the framework of planning and implementation of public building management and the integration of climate change adaptation strategies. A key point is that climate change can induce premature obsolescence of public buildings and services, which will increase the maintenance and refurbishment costs. This in turn will affect the life cycle cost of the building. Furthermore, a business continuity plan is essential for public building management in the context of disasters. The paper also highlights the significant role that the occupants of public buildings can play in the development and implementation of climate change adaptation strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Climate Commission recently outlined the trend of major extreme weather events in different regions of Australia, including heatwaves, floods, droughts, bushfires, cyclones and storms. These events already impose an enormous health and financial burden onto society and are projected to occur more frequently and intensely. Unless we act now, further financial losses and increasing health burdens seem inevitable. We seek to highlight the major areas for interdisciplinary investigation, identify barriers and formulate response strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global food system is undergoing unprecedented change. With population increases, demands for food globally will continue to rise at the same time that agricultural environments are compromised through urban encroachment, climate change and environmental degradation. Australia has long identified itself as an agricultural exporting nation—but what will its capacity be in feeding an increasing global population as it also comes to terms with extreme climatic events such as the floods, fires and droughts, and reduced water availability, experienced in recent decades? This chapter traces the history of Australian agricultural exports and evaluates its food production and export capacity against scientific predictions of climate change impacts. With the federal government forecasting declines in the production of wheat, beef, dairy and sugar, Australia’s key export commodities may well be compromised. Calls to produce more food using new technologies are likely to generate significant environmental problems. Yet, a radical reconfiguration of Australian agriculture which incorporates alternative approaches, such as agro-ecology, is rarely considered by government and industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary purpose of this paper is to overview a selection of advanced water treatment technology systems that are suited for application in towns and settlements in remote and very remote regions of Australia and vulnerable and lagging rural regions in Sri Lanka. This recognises that sanitation and water treatment are inextricably linked and both are needed to reduce risks to environment and population health from contaminated water sources. For both Australia and Sri Lanka only a small fraction of the settlements in rural and remote regions are connected to water treatment facilities and town water supplies. In Australia’s remote/very remote regions raw water is drawn from underground sources and rainwater capture. Most settlements in rural Sri Lanka rely on rivers, reservoirs, wells, springs or carted water. Furthermore, Sri Lanka has more than 25,000 hand pumped tube wells which saved the communities during recent droughts. Decentralised water supply systems offer the opportunity to provide safe drinking water to these remote/very remote and rural regions where centralised systems are not feasible due to socio-cultural, economic, political, technological reasons. These systems reduce health risks from contaminated water supplies. In remote areas centralized systems fail due to low population density and less affordability. Globally, a new generation of advanced water treatment technologies are positioned to make a major impact on the provision of safe potable water in remote/very remote regions in Australia and rural regions in Sri Lanka. Some of these systems were developed for higher income countries. However, with careful selection and further research they can be tailored to match local socio-economic conditions and technical capacity. As such, they can equally be used to provide decentralised water supply in communities in developed and developing countries such as Australia and Sri Lanka.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian water sector needs to adapt to effectively deal with the impacts of climate change on its systems. Challenges as a result of climate change include increasingly extreme occurrences of weather events including flooding and droughts (Pittock, 2011). In response to such challenges, the National Water Commission in Australia has identified the need for the water sector to transition towards being readily adaptable and able to respond to complex needs for a variety of supply and demand scenarios (National Water Commission, 2013). To successfully make this transition, the sector will need to move away from business as usual, and proactively pursue and adopt innovative approaches and technologies as a means to successfully address the impacts of climate change on the Australian water sector. In order to effectively respond to specific innovation challenges related to the sector, including climate change, it is first necessary to possess a foundational understanding about the key elements related to innovation in the sector. This paper presents this base level understanding, identifying the key barriers, drivers and enablers, and elements for innovative practise in the water sector. After initially inspecting the literature around the challenges stemming from climate change faced by the sector, the paper then examines the findings from the initial two rounds of a modified Delphi study, conducted with experts from the Australian water sector, including participants from research, government and industry backgrounds. The key barriers, drivers and enablers for innovation in the sector identified during the initial phase of the study formed the basis for the remainder of the investigation. Key elements investigated were: barriers – scepticism, regulation systems, inconsistent policy; drivers – influence of policy, resource scarcity, thought leadership; enablers – framing the problem, effective regulations, community acceptance. There is a convincing argument for the water sector transitioning to a more flexible, adaptive and responsive system in the face of challenges resulting from climate change. However, without first understanding the challenges and opportunities around making this transition, the likelihood of success is limited. For that reason, this paper takes the first step in understanding the elements surrounding innovation in the Australian water sector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

- Problem Climate change is affecting the world in numerous ways such as increased temperatures, sea level rise, and increased droughts and floods. Governments worldwide, especially in the most vulnerable countries, are urged to seek better solutions for sustainable development. The construction industry and buildings have enormous impacts on humans and the environment, meaning green building must be one of the solutions. Government involvement is widely considered as one of the essential and most effective ways to promote green building and drive the construction market towards sustainability. This paper will review green building policy of the Pacific-Rim countries that are most vulnerable to climate change according to the recent Standard and Poor’s ranking, including: Cambodia, Vietnam, Fiji, Philippines, Papua New Guinea and Indonesia. Methodology: This paper will review policy related publications including journal and conference papers, portal websites of governments, legislation documents and reports of international organisations. It will focus on the policies and governmental instruments that support the adoption of green building practices. - Findings All six governments have launched climate change adaptation policies, showing a great concern regarding the damages caused by the phenomenon. All countries except Papua New Guinea have promulgated energy efficiency policy and programs which indirectly promote the adoption of green building practices. The comparison study shows that Philippines and Indonesia motivate the adoption of renewable energy generation, energy efficiency and green building through either financial or advocacy instruments, while other four countries tend to implement regulatory tools to mandate energy conservation. Through comparison, Cambodia and Vietnam – the two countries providing vision to develop green building - can learn from Philippines and Indonesia’s policy and instruments. - Research limitations Language differences between the countries and limit of formal sources may pose difficulties in searching for information. While much English language literature exists, sources from Cambodia, Philippines and Indonesia are less accessible. - Takeaway for practice As the paper provides more understanding about the supportive policy of those countries, it will introduce more opportunities for green property developers to invest in construction markets of those Pacific-Rim countries. - Originality There is little research reviewing green building supportive policies of developing and less-wealthy countries that are forecasted to be most vulnerable and most impacted by climate change. The originality of this paper lies in its investigation on how those countries intend to respond to this phenomenon and whether and to what extent they support the green building market by using policy tools.