150 resultados para distribution function
em Queensland University of Technology - ePrints Archive
Resumo:
The effect of density and size of dust grains on the electron energy distribution function (EEDF) in low-temperature complex plasmas is studied. It is found that the EEDF depends strongly on the dust density and size. The behavior of the electron temperature can differ significantly from that of a pristine plasma. For low-pressure argon glow discharge, the Druyvesteyn-like EEDF often found in pristine plasmas can become nearly Maxwellian if the dust density and/or sizes are large. One can thus control the plasma parameters by the dust grains.
Resumo:
Diffusion weighted magnetic resonance (MR) imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of 6 directions, second-order tensors can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve crossing fiber tracts. Recently, a number of high-angular resolution schemes with greater than 6 gradient directions have been employed to address this issue. In this paper, we introduce the Tensor Distribution Function (TDF), a probability function defined on the space of symmetric positive definite matrices. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the diffusion orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function.
Resumo:
Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. With High-angular resolution diffusion imaging (HARDI) and the tensor distribution function (TDF), one can reconstruct multiple underlying fibers per voxel and their individual anisotropy measures by representing the diffusion profile as a probabilistic mixture of tensors. We found that FA, when compared with TDF-derived anisotropy measures, correlates poorly with individual fiber anisotropy, and may sub-optimally detect disease processes that affect myelination. By contrast, mean diffusivity (MD) as defined in standard DTI appears to be more accurate. Overall, we argue that novel measures derived from the TDF approach may yield more sensitive and accurate information than DTI-derived measures.
Resumo:
High-angular resolution diffusion imaging (HARDI) can reconstruct fiber pathways in the brain with extraordinary detail, identifying anatomical features and connections not seen with conventional MRI. HARDI overcomes several limitations of standard diffusion tensor imaging, which fails to model diffusion correctly in regions where fibers cross or mix. As HARDI can accurately resolve sharp signal peaks in angular space where fibers cross, we studied how many gradients are required in practice to compute accurate orientation density functions, to better understand the tradeoff between longer scanning times and more angular precision. We computed orientation density functions analytically from tensor distribution functions (TDFs) which model the HARDI signal at each point as a unit-mass probability density on the 6D manifold of symmetric positive definite tensors. In simulated two-fiber systems with varying Rician noise, we assessed how many diffusionsensitized gradients were sufficient to (1) accurately resolve the diffusion profile, and (2) measure the exponential isotropy (EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional HARDI signal. At lower SNR, the reconstruction accuracy, measured using the Kullback-Leibler divergence, rapidly increased with additional gradients, and EI estimation accuracy plateaued at around 70 gradients.
Resumo:
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
Resumo:
The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.
Resumo:
Pedestrian movement is known to cause significant effects on indoor MIMO channels. In this paper, a statistical characterization of the indoor MIMO-OFDM channel subject ot pedestrian movement is reported. The experiment used 4 sending and 4 receiving antennas and 114 sub-carriers at 5.2 GHz. Measurement scenarios varied from zero to ten pedestrians walking randomly between transmitter (tx) and receiver (Rx) arrays. The empirical cumulative distribution function (CDF) of the received fading envelope fits the Ricean distribution with K factors ranging from 7dB to 15 dB, for the 10 pedestrians and vacant scenarios respectively. In general, as the number of pedestrians increase, the CDF slope tends to decrease proportionally. Furthermore, as the number of pedestrians increase, increasing multipath contribution, the dynamic range of channel capacity increases proportionally. These results are consistent with measurement results obtained in controlled scenarios for a fixed narrowband Single-Input Single-Output (SISO) link at 5.2 GHz in previous work. The described empirical characterization provides an insight into the prediction of human-body shadowing effects for indoor MIMO-OFDM channels at 5.2 GHz.
Resumo:
Since the availability of 3D full body scanners and the associated software systems for operations with large point clouds, 3D anthropometry has been marketed as a breakthrough and milestone in ergonomic design. The assumptions made by the representatives of the 3D paradigm need to be critically reviewed though. 3D anthropometry has advantages as well as shortfalls, which need to be carefully considered. While it is apparent that the measurement of a full body point cloud allows for easier storage of raw data and improves quality control, the difficulties in calculation of standardized measurements from the point cloud are widely underestimated. Early studies that made use of 3D point clouds to derive anthropometric dimensions have shown unacceptable deviations from the standardized results measured manually. While 3D human point clouds provide a valuable tool to replicate specific single persons for further virtual studies, or personalize garment, their use in ergonomic design must be critically assessed. Ergonomic, volumetric problems are defined by their 2-dimensional boundary or one dimensional sections. A 1D/2D approach is therefore sufficient to solve an ergonomic design problem. As a consequence, all modern 3D human manikins are defined by the underlying anthropometric girths (2D) and lengths/widths (1D), which can be measured efficiently using manual techniques. Traditionally, Ergonomists have taken a statistical approach to design for generalized percentiles of the population rather than for a single user. The underlying method is based on the distribution function of meaningful single and two-dimensional anthropometric variables. Compared to these variables, the distribution of human volume has no ergonomic relevance. On the other hand, if volume is to be seen as a two-dimensional integral or distribution function of length and girth, the calculation of combined percentiles – a common ergonomic requirement - is undefined. Consequently, we suggest to critically review the cost and use of 3D anthropometry. We also recommend making proper use of widely available single and 2-dimensional anthropometric data in ergonomic design.
Resumo:
The available wind power is stochastic and requires appropriate tools in the OPF model for economic and reliable power system operation. This paper exhibit the OPF formulation with factors involved in the intermittency of wind power. Weibull distribution is adopted to find the stochastic wind speed and power distribution. The reserve requirement is evaluated based on the wind distribution and risk of under/over estimation of the wind power. In addition, the Wind Energy Conversion System (WECS) is represented by Doubly Fed Induction Generator (DFIG) based wind farms. The reactive power capability for DFIG based wind farm is also analyzed. The study is performed on IEEE-30 bus system with wind farm located at different buses and with different wind profiles. Also the reactive power capacity to be installed in the wind farm to maintain a satisfactory voltage profile under the various wind flow scenario is demonstrated.
Resumo:
Groundwater flow models are usually characterized as being either transient flow models or steady state flow models. Given that steady state groundwater flow conditions arise as a long time asymptotic limit of a particular transient response, it is natural for us to seek a finite estimate of the amount of time required for a particular transient flow problem to effectively reach steady state. Here, we introduce the concept of mean action time (MAT) to address a fundamental question: How long does it take for a groundwater recharge process or discharge processes to effectively reach steady state? This concept relies on identifying a cumulative distribution function, $F(t;x)$, which varies from $F(0;x)=0$ to $F(t;x) \to \infty$ as $t\to \infty$, thereby providing us with a measurement of the progress of the system towards steady state. The MAT corresponds to the mean of the associated probability density function $f(t;x) = \dfrac{dF}{dt}$, and we demonstrate that this framework provides useful analytical insight by explicitly showing how the MAT depends on the parameters in the model and the geometry of the problem. Additional theoretical results relating to the variance of $f(t;x)$, known as the variance of action time (VAT), are also presented. To test our theoretical predictions we include measurements from a laboratory–scale experiment describing flow through a homogeneous porous medium. The laboratory data confirms that the theoretical MAT predictions are in good agreement with measurements from the physical model.
Resumo:
Through a combinatorial approach involving experimental measurement and plasma modelling, it is shown that a high degree of control over diamond-like nanocarbon film sp3/sp2 ratio (and hence film properties) may be exercised, starting at the level of electrons (through modification of the plasma electron energy distribution function). Hydrogenated amorphous carbon nanoparticle films with high percentages of diamond-like bonds are grown using a middle-frequency (2 MHz) inductively coupled Ar + CH4 plasma. The sp3 fractions measured by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in the thin films are explained qualitatively using sp3/sp2 ratios 1) derived from calculated sp3 and sp2 hybridized precursor species densities in a global plasma discharge model and 2) measured experimentally. It is shown that at high discharge power and lower CH4 concentrations, the sp3/sp2 fraction is higher. Our results suggest that a combination of predictive modeling and experimental studies is instrumental to achieve deterministically grown made-to-order diamond-like nanocarbons suitable for a variety of applications spanning from nano-magnetic resonance imaging to spin-flip quantum information devices. This deterministic approach can be extended to graphene, carbon nanotips, nanodiamond and other nanocarbon materials for a variety of applications
Resumo:
Reliable calculations of the electron/ion energy losses in low-pressure thermally nonequilibrium low-temperature plasmas are indispensable for predictive modeling related to numerous applications of such discharges. The commonly used simplified approaches to calculation of electron/ion energy losses to the chamber walls use a number of simplifying assumptions that often do not account for the details of the prevailing electron energy distribution function (EEDF) and overestimate the contributions of the electron losses to the walls. By direct measurements of the EEDF and careful calculation of contributions of the plasma electrons in low-pressure inductively coupled plasmas, it is shown that the actual losses of kinetic energy of the electrons and ions strongly depend on the EEDF. It is revealed that the overestimates of the total electron/ion energy losses to the walls caused by improper assumptions about the prevailing EEDF and about the ability of the electrons to pass through the repulsive potential of the wall may lead to significant overestimates that are typically in the range between 9 and 32%. These results are particularly important for the development of power-saving strategies for operation of low-temperature, low-pressure gas discharges in diverse applications that require reasonably low power densities. © 2008 American Institute of Physics.