177 resultados para direct operational calculus
em Queensland University of Technology - ePrints Archive
Resumo:
Purpose – The purpose of this paper is to examine the role of three strategies - organisational, business and information system – in post implementation of technological innovations. The findings reported in the paper are that improvements in operational performance can only be achieved by aligning technological innovation effectiveness with operational effectiveness. Design/methodology/approach – A combination of qualitative and quantitative methods was used to apply a two-stage methodological approach. Unstructured and semi structured interviews, based on the findings of the literature, were used to identify key factors used in the survey instrument design. Confirmatory factor analysis (CFA) was used to examine structural relationships between the set of observed variables and the set of continuous latent variables. Findings – Initial findings suggest that organisations looking for improvements in operational performance through adoption of technological innovations need to align with operational strategies of the firm. Impact of operational effectiveness and technological innovation effectiveness are related directly and significantly to improved operational performance. Perception of increase of operational effectiveness is positively and significantly correlated with improved operational performance. The findings suggest that technological innovation effectiveness is also positively correlated with improved operational performance. However, the study found that there is no direct influence of strategiesorganisational, business and information systems (IS) - on improvement of operational performance. Improved operational performance is the result of interactions between the implementation of strategies and related outcomes of both technological innovation and operational effectiveness. Practical implications – Some organisations are using technological innovations such as enterprise information systems to innovate through improvements in operational performance. However, they often focus strategically only on effectiveness of technological innovation or on operational effectiveness. Such a focus will be detrimental in the long-term of the enterprise. This research demonstrated that it is not possible to achieve maximum returns through technological innovations as dimensions of operational effectiveness need to be aligned with technological innovations to improve their operational performance. Originality/value – No single technological innovation implementation can deliver a sustained competitive advantage; rather, an advantage is obtained through the capacity of an organisation to exploit technological innovations’ functionality on a continuous basis. To achieve sustainable results, technology strategy must be aligned with organisational and operational strategies. This research proposes the key performance objectives and dimensions that organisations should focus to achieve a strategic alignment. Research limitations/implications – The principal limitation of this study is that the findings are based on investigation of small sample size. There is a need to explore the appropriateness of influence of scale prior to generalizing the results of this study.
Resumo:
The purpose of this article is to examine the role of the alignment between technological innovation effectiveness and operational effectiveness after the implementation of enterprise information systems, and the impact of this alignment on the improvement in operational performance. Confirmatory factor analysis was used to examine structural relationships between the set of observed variables and the set of continuous latent variables. The findings from this research suggest that the dimensions stemming from technological innovation effectiveness such as system quality, information quality, service quality, user satisfaction and the performance objectives stemming from operational effectiveness such as cost, quality, reliability, flexibility and speed are important and significantly well-correlated factors. These factors promote the alignment between technological innovation effectiveness and operational effectiveness and should be the focus for managers in achieving effective implementation of technological innovations. In addition, there is a significant and direct influence of this alignment on the improvement of operational performance. The principal limitation of this study is that the findings are based on investigation of small sample size.
Resumo:
Organisations are increasingly investing in complex technological innovations such as enterprise information systems with the aim of improving the operations of the business, and in this way gaining competitive advantage. However, the implementation of technological innovations tends to have an excessive focus on either technology innovation effectiveness (also known as system effectiveness), or the resulting operational effectiveness; focusing on either one of them is detrimental to the long-term enterprise benefits through failure to achieve the real value of technological innovations. The lack of research on the dimensions and performance objectives that organisations must be focusing on is the main reason for this misalignment. This research uses a combination of qualitative and quantitative, three-stage methodological approach. Initial findings suggest that factors such as quality of information from technology innovation effectiveness, and quality and speed from operational effectiveness are important and significantly well correlated factors that promote the alignment between technology innovation effectiveness and operational effectiveness.
Resumo:
This paper discusses challenges to developers of a national Life Cycle Inventory (LCI) database on which to base assessment of building environmental impacts and a key to development of a fully integrated eco-design tool created for automated eco-efficiency assessment of commercial building design direct from 3D CAD. The scope of this database includes Australian and overseas processing burdens involved in acquiring, processing, transporting, fabricating, finishing and using metals, masonry, timber, glazing, ceramics, plastics, fittings, composites and coatings. Burdens are classified, calculated and reported for all flows of raw materials, fuels, energy and emissions to and from the air, soil and water associated with typical products and services in building construction, fitout and operation. The aggregated life cycle inventory data provides the capacity to generate environmental impact assessment reports based on accepted performance indicators. Practitioners can identify hot spots showing high environmental burdens of a proposed design and drill down to report on specific building components. They can compare assessments with case studies and operational estimates to assist in eco-efficient design of a building, fitout and operation.
Resumo:
The knee forces and moments estimated by inverse dynamics and directly measured by a multiaxial transducer were compared during the gait of a transfemoral amputee. The estimated and directly measured forces and moments were relatively close. However, 3D inverse dynamics estimated only partially the forces and moments associated with the deformation of the prosthetic foot and locking of knee mechanism.
Resumo:
Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.
Resumo:
Simulation is widely used as a tool for analyzing business processes but is mostly focused on examining abstract steady-state situations. Such analyses are helpful for the initial design of a business process but are less suitable for operational decision making and continuous improvement. Here we describe a simulation system for operational decision support in the context of workflow management. To do this we exploit not only the workflow’s design, but also use logged data describing the system’s observed historic behavior, and incorporate information extracted about the current state of the workflow. Making use of actual data capturing the current state and historic information allows our simulations to accurately predict potential near-future behaviors for different scenarios. The approach is supported by a practical toolset which combines and extends the workflow management system YAWL and the process mining framework ProM.