3 resultados para dibenzofurans
em Queensland University of Technology - ePrints Archive
Resumo:
Thirty workers who had been exposed to combustion products for several years due to testing of flame retarding qualities of building materials and 30 controls from the same facility were investigated. Concentrations found in samples taken from different places of the facility were up to 14,660 μg/kg for polybrominated dibenzofurans and up to 67.1 μg/kg for polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs). Physical examination, routine laboratory parameters, and blood fat concentrations of PCDDs and PCDFs revealed normal findings. Neurotoxic symptoms showed a weak tendency of overrepresentation among the exposed workers. The frequency of neurobehavioural symptoms increased significantly with trait anxiety independent of exposure to combustion products. (C) 2000 Elsevier Science Ltd.
Resumo:
In an effort to understand the fundamental aspects of air quality in traffic tunnel environments, field campaigns were conducted to measure polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and other important pollutants within two traffic tunnels in Nam San (NS) and Hong Ji (HJ) in Korea in 2009 and 2010. The mean concentrations of ∑PCDD/Fs (in fg/m(3)) at the two tunnel sites were 1270 (± 880) and 1200 (± 810), respectively. These values were moderately lower than those measured at a non-tunnel urban background site (1350 (± 780) fg/m(3))--selected as a reference in this study. In addition, seasonal patterns of dioxin concentrations were clearly evident at the traffic tunnels like the urban reference site, showing higher levels during the winter (and spring) than the summer (and fall). The observed seasonal variations were driven by changes in the concentrations of ∑PCDF congeners, while ∑PCDD concentrations showed little seasonality. The results of our study suggest that there is no significant difference in source characteristics between the two investigated tunnel sites and urban location, although the role of gasoline and diesel fueled vehicles are considered as the major source in determining the PCDDs and PCDF levels in a tunnel environment. However, given the relative increase in other important ambient pollutant (e.g. PM10) concentrations over ∑PCDD/Fs in tunnel air (compared to urban background air), the balance of sources in tunnels is clearly different from those in urban air overall.