935 resultados para design drawings
em Queensland University of Technology - ePrints Archive
Resumo:
The aim of this paper is to investigate the relationship between research and design through an applied example of how architects can approach the design for a building guided by data derived from morphological research. An Expert Focus Group consisting of nine leading architects and urban designers from Brisbane, Australia was given the task of testing this proposition. Analysis of the workshop outcomes are examined, and the design drawings of each participant are assessed to determine the relative congruence of the design proposals within the morphological commodity of the specific context. In addition, qualitative data, captured through verbal and written feedback is assessed highlighting the participants' observations and experiences of the workshop. This paper makes a contribution to the current debate within the field on the opportunities of integrating research with practice.
Resumo:
An earlier CRC-CI project on ‘automatic estimating’ (AE) has shown the key benefit of model-based design methodologies in building design and construction to be the provision of timely quantitative cost evaluations. Furthermore, using AE during design improves design options, and results in improved design turn-around times, better design quality and/or lower costs. However, AEs for civil engineering structures do not exist; and research partners in the CRC-CI expressed interest in exploring the development of such a process. This document reports on these investigations. The central objective of the study was to evaluate the benefits and costs of developing an AE for concrete civil engineering works. By studying existing documents and through interviews with design engineers, contractors and estimators, we have established that current civil engineering practices (mainly roads/bridges) do not use model-based planning/design. Drawings are executed in 2D and only completed at the end of lengthy planning/design project management lifecycle stages. We have also determined that estimating plays two important, but different roles. The first is part of project management (which we have called macro level estimating). Estimating in this domain sets project budgets, controls quality delivery and contains costs. The second role is estimating during planning/design (micro level estimating). The difference between the two roles is that the former is performed at the end of various lifecycle stages, whereas the latter is performed at any suitable time during planning/design.
Resumo:
An important aspect of designing any product is validation. Virtual design process (VDP) is an alternative to hardware prototyping in which analysis of designs can be done without manufacturing physical samples. In recent years, VDP have been generated either for animation or filming applications. This paper proposes a virtual reality design process model on one of the applications when used as a validation tool. This technique is used to generate a complete design guideline and validation tool of product design. To support the design process of a product, a virtual environment and VDP method were developed that supports validation and an initial design cycle performed by a designer. The product model car carrier is used as illustration for which virtual design was generated. The loading and unloading sequence of the model for the prototype was generated using automated reasoning techniques and was completed by interactively animating the product in the virtual environment before complete design was built. By using the VDP process critical issues like loading, unloading, Australian Design rules (ADR) and clearance analysis were done. The process would save time, money in physical sampling and to large extent in complete math generation. Since only schematic models are required, it saves time in math modelling and handling of bigger size assemblies due to complexity of the models. This extension of VDP process for design evaluation is unique and was developed, implemented successfully. In this paper a Toll logistics and J Smith and Sons car carrier which is developed under author’s responsibility has been used to illustrate our approach of generating design validation via VDP.
Resumo:
Children’s drawings provide rich qualitative data (Walker, 2008) and “valuable information for the assessment of children's environmental perceptions” (Barraza, 1999, p. 49). They are the primary data source being used to re-imagine school from a student perspective (Schratz & Steiner-Löffler, 1998) in a research project being carried out with primary school students in Queensland, Australia. This paper will report on the progress of this project which addresses a mostly unmet need for students’ perspectives to be included in school design (Rudduck & Flutter, 2004). Grade 5/6 students in a number of primary schools have been invited to submit annotated drawings with up to 200 words of text illustrating their ideal educational spaces. Using purpose-designed analytical tools, the submissions will be compared across student backgrounds and school types to obtain a better understanding of the needs and educational desires of young people in relation to changing learning environments. The findings will inform consideration of the design and use of educational spaces with all work exhibited through a dedicated website. The term ‘educational spaces’ avoids restrictive notions of what the concept of ‘school’ means, referring to any real or virtual space in which teaching and learning may occur or, as Ferguson and Seddon (2007) have referred to it, “the shifting imagery of education” that includes red brick schools and dispersed learning networks. The theoretical framework for this study is grounded in the work of Greene (1995) and Wright-Mills (2001) who cited the deployment of critical and empathic imagination in addressing education reform.
Resumo:
The Centre for Subtropical Design at QUT, in partnership with the Queensland Government and Brisbane City Council, conducts research focused on 'best practice' outcomes for higher density urban living environments in the subtropics through the study of typical urban residential typologies, and urban design. The aim of the research is to inform and illustrate best practice subtropical design principles to policy makers and development industry professionals to stimulate climate-responsive outcomes. The Centre for Subtropical Design recently sought project-specific funding from the Queensland Department of Infrastructure and Planning (DIP) to investigate residential typologies for sustainable subtropical urban communities, based on transit orientated development principles and outcomes for areas around public transport nodes. A development site within the Fitzgibbon Urban Development Area, and close to a rail and bsu transport corridor, provided a case study location for this project. Four design-led multi-disciplinary creative teams participated in a Design Charrette and have produced concept drawings and propositions on a range of options, or prototypes. Analysis of selected prototypes has been undertaken to determine their environmental, economic and social performance. This Project Report discusses the scope of the project funded by DIP in terms of activities undertaken to date, and deliverables achieved. A subsequent Research Report will discuss the detailed findings of the analysis.
Resumo:
After state-wide flooding and a category-5 tropical cyclone, three-quarters of the state of Queensland was declared a disaster zone in early 2011. This deluge of adversity had a significant impact on university students, a few weeks prior to the start of the academic semester. The purpose of this paper is to examine the role that design plays in facilitating students to understand and respond to, adversity. The participants of this study were second and fourth year architectural design students at a large Australian University, in Queensland. As a part of their core architectural design studies, students were required to provide architectural responses to the recent catastrophic events in Queensland. Qualitative data was obtained through student surveys, work design work submitted by students and a survey of guests who attending an exhibition of the student work. The results of this research showed that the students produced more than just the required set of architectural drawings, process journals and models, but also recognition of the important role that the affective dimension of the flooding event and the design process played in helping them to both understand and respond to, adversity. They held the ‘real world’ experience and practical aspect of the assessment in higher regard than their typical focus on aesthetics and the making of iconic design. Perhaps most importantly, the students recognised that this process allowed them to have a voice, and a means to respond to adversity through the powerful language of design.
Resumo:
This article centres on a research project in which freehand drawings provided a richly creative and colourful data source of children’s imagined, ideal learning environments. Issues concerning the analysis of the visual data are discussed, in particular how imaginative content was analysed and how the analytical process was dependent on an accompanying, secondary data source comprising brief, explanatory written texts.
Resumo:
A largely overlooked aspect of creative design practices is how physical space in design studios plays a role in supporting designers' everyday work. In particular, studio surfaces such as designers' desks, office walls, notice boards, clipboards and drawing boards are full of informative, inspirational and creative artefacts such as, sketches, drawings, posters, story-boards and Post-it notes. Studio surfaces are not just the carriers of information but importantly they are sites of methodic design practices, i.e. they indicate, to an extent, how design is being carried out. This article describes the results of an ethnographic study on the use of workplace surfaces in design studios, from two academic design departments. Using the field study results, the article introduces an idea of ‘artful surfaces’. Artful surfaces emphasise how artfully designers integrate these surfaces into their everyday work and how the organisation of these surfaces comes about helping designers in accomplishing their creative and innovative design practices. Using examples from the field study, the article shows that artful surfaces have both functional and inspirational characteristics. From the field study, three types of artful surfaces are identified: personal; shared; and project-specific. The article suggests that a greater insight into how these artful surfaces are created and used could lead to better design of novel display technologies to support designers' everyday work.
Resumo:
The role of material artefacts in supporting distributed and co-located work practices has been well acknowledged within HCI and CSCW research. In this paper, we show that in addition to their ecological, coordinative and organizational support, artefacts also play an 'experiential' role. In this case, artefacts not only improve efficiency or have a purely functional role (e.g. allowing people to complete tasks quickly), but the materiality, use and manifestations of these artefacts bring quality and richness to people's performance and help them make better sense of their everyday lives. In a domain such as industrial design, such artefacts play an important role for supporting creativity and innovation. Based on our ethnographic fieldwork on understanding cooperative design practices of industrial design students and researchers, we describe several experiential practices that are supported by design-related artefacts such as sketches, drawings, physical models and explorative prototypes -- used and developed in designers' everyday work. Our main intention in carrying out this kind of research is to develop technologies to support designers' everyday practices. We believe that with the emergence of ubiquitous computing, there is a growing need to focus on the personal, social and creative side of people's everyday experiences. By focusing on the experiential practices of designers, we can provide a much broader view in the design of new interactive technologies.
Resumo:
Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.
Resumo:
The QUT Centre for Subtropical Design conducted a design-led interdisciplinary collaborative workshop (charrette) to develop some initial ideas for how innovation in research and practice can be applied to the complex problem of resilient future-focussed urban renewal in Rockhampton’s flood-prone suburbs and core grid. Three creative teams explored a range of scenarios for Rockhampton’s resilience in built form over the longer term. A large number of sketches, drawings and text were produced over two days. This report identifies themes, principles and strategies which emerged from the charrette. Each group proposed multiple guiding principles that fell into three strategic approaches: defend (through construction of a levee); adapt (by designing with flood in mind); retreat (a long term view to relocate populations in flood-prone areas). All three groups identified the importance of design that accommodates art, heritage, recreation, sustainability and tourism, and proposed these as principles to guide future strategies that mediate between Rockhampton’s broader ecological landscape and urban living to accommodate more affordable housing options, demonstrate sustainability and be climate responsive to predicted increased extreme weather events including flooding. The charrette outcomes pave the way to investigate wider issues and solutions to Rockhampton’s resilient future, beyond a levee as an isolated structure.