462 resultados para degree distribution

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of radar was developed for the estimation of the distance (range) and velocity of a target from a receiver. The distance measurement is obtained by measuring the time taken for the transmitted signal to propagate to the target and return to the receiver. The target's velocity is determined by measuring the Doppler induced frequency shift of the returned signal caused by the rate of change of the time- delay from the target. As researchers further developed conventional radar systems it become apparent that additional information was contained in the backscattered signal and that this information could in fact be used to describe the shape of the target itself. It is due to the fact that a target can be considered to be a collection of individual point scatterers, each of which has its own velocity and time- delay. DelayDoppler parameter estimation of each of these point scatterers thus corresponds to a mapping of the target's range and cross range, thus producing an image of the target. Much research has been done in this area since the early radar imaging work of the 1960s. At present there are two main categories into which radar imaging falls. The first of these is related to the case where the backscattered signal is considered to be deterministic. The second is related to the case where the backscattered signal is of a stochastic nature. In both cases the information which describes the target's scattering function is extracted by the use of the ambiguity function, a function which correlates the backscattered signal in time and frequency with the transmitted signal. In practical situations, it is often necessary to have the transmitter and the receiver of the radar system sited at different locations. The problem in these situations is 'that a reference signal must then be present in order to calculate the ambiguity function. This causes an additional problem in that detailed phase information about the transmitted signal is then required at the receiver. It is this latter problem which has led to the investigation of radar imaging using time- frequency distributions. As will be shown in this thesis, the phase information about the transmitted signal can be extracted from the backscattered signal using time- frequency distributions. The principle aim of this thesis was in the development, and subsequent discussion into the theory of radar imaging, using time- frequency distributions. Consideration is first given to the case where the target is diffuse, ie. where the backscattered signal has temporal stationarity and a spatially white power spectral density. The complementary situation is also investigated, ie. where the target is no longer diffuse, but some degree of correlation exists between the time- frequency points. Computer simulations are presented to demonstrate the concepts and theories developed in the thesis. For the proposed radar system to be practically realisable, both the time- frequency distributions and the associated algorithms developed must be able to be implemented in a timely manner. For this reason an optical architecture is proposed. This architecture is specifically designed to obtain the required time and frequency resolution when using laser radar imaging. The complex light amplitude distributions produced by this architecture have been computer simulated using an optical compiler.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secure communications between large number of sensor nodes that are randomly scattered over a hostile territory, necessitate efficient key distribution schemes. However, due to limited resources at sensor nodes such schemes cannot be based on post deployment computations. Instead, pairwise (symmetric) keys are required to be pre-distributed by assigning a list of keys, (a.k.a. key-chain), to each sensor node. If a pair of nodes does not have a common key after deployment then they must find a key-path with secured links. The objective is to minimize the keychain size while (i) maximizing pairwise key sharing probability and resilience, and (ii) minimizing average key-path length. This paper presents a deterministic key distribution scheme based on Expander Graphs. It shows how to map the parameters (e.g., degree, expansion, and diameter) of a Ramanujan Expander Graph to the desired properties of a key distribution scheme for a physical network topology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an analysis of construction project bids to determine (a) the global distribution and (b) factors influencing the distribution of bids. The global distribution of bids was found, by using a battery of ll test statistics, to be approximated by a three-parameter log normal distribution. No global spread parameter was found. A multivariate analysis revealed the year of tender to be the major influencing factor. Consideration of the construction order, tender price and output indices lead to the conclusion that distributional spread reflected the degree of difference in pricing policies between bidders and the skewness of the distributions reflected the degree of competition. The paper concludes with a tentative model of the causal relationships between the factors and distributional characteristics involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agent-based modelling (ABM), like other modelling techniques, is used to answer specific questions from real world systems that could otherwise be expensive or impractical. Its recent gain in popularity can be attributed to some degree to its capacity to use information at a fine level of detail of the system, both geographically and temporally, and generate information at a higher level, where emerging patterns can be observed. This technique is data-intensive, as explicit data at a fine level of detail is used and it is computer-intensive as many interactions between agents, which can learn and have a goal, are required. With the growing availability of data and the increase in computer power, these concerns are however fading. Nonetheless, being able to update or extend the model as more information becomes available can become problematic, because of the tight coupling of the agents and their dependence on the data, especially when modelling very large systems. One large system to which ABM is currently applied is the electricity distribution where thousands of agents representing the network and the consumers’ behaviours are interacting with one another. A framework that aims at answering a range of questions regarding the potential evolution of the grid has been developed and is presented here. It uses agent-based modelling to represent the engineering infrastructure of the distribution network and has been built with flexibility and extensibility in mind. What distinguishes the method presented here from the usual ABMs is that this ABM has been developed in a compositional manner. This encompasses not only the software tool, which core is named MODAM (MODular Agent-based Model) but the model itself. Using such approach enables the model to be extended as more information becomes available or modified as the electricity system evolves, leading to an adaptable model. Two well-known modularity principles in the software engineering domain are information hiding and separation of concerns. These principles were used to develop the agent-based model on top of OSGi and Eclipse plugins which have good support for modularity. Information regarding the model entities was separated into a) assets which describe the entities’ physical characteristics, and b) agents which describe their behaviour according to their goal and previous learning experiences. This approach diverges from the traditional approach where both aspects are often conflated. It has many advantages in terms of reusability of one or the other aspect for different purposes as well as composability when building simulations. For example, the way an asset is used on a network can greatly vary while its physical characteristics are the same – this is the case for two identical battery systems which usage will vary depending on the purpose of their installation. While any battery can be described by its physical properties (e.g. capacity, lifetime, and depth of discharge), its behaviour will vary depending on who is using it and what their aim is. The model is populated using data describing both aspects (physical characteristics and behaviour) and can be updated as required depending on what simulation is to be run. For example, data can be used to describe the environment to which the agents respond to – e.g. weather for solar panels, or to describe the assets and their relation to one another – e.g. the network assets. Finally, when running a simulation, MODAM calls on its module manager that coordinates the different plugins, automates the creation of the assets and agents using factories, and schedules their execution which can be done sequentially or in parallel for faster execution. Building agent-based models in this way has proven fast when adding new complex behaviours, as well as new types of assets. Simulations have been run to understand the potential impact of changes on the network in terms of assets (e.g. installation of decentralised generators) or behaviours (e.g. response to different management aims). While this platform has been developed within the context of a project focussing on the electricity domain, the core of the software, MODAM, can be extended to other domains such as transport which is part of future work with the addition of electric vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment samples from 13 sampling sites in Deception Bay, Australia were analysed for the presence of heavy metals. Enrichment factors, modified contamination indices and Nemerow pollution indices were calculated for each sampling site to determine sediment quality. The results indicate significant pollution of most sites by lead (average enrichment factor (EF) of 13), but there is also enrichment of arsenic (average EF 2.3), zinc (average EF 2.7) and other heavy metals. The modified degree of contamination indices (average 1.0) suggests that there is little contamination. By contrast, the Nemerow pollution index (average 5.8) suggests that Deception Bay is heavily contaminated. Cluster analysis was undertaken to identify groups of elements. Strong correlation between some elements and two distinct clusters of sampling sites based on sediment type was evident. These results have implications for pollution in complex marine environments where there is significant influx of sand and sediment into an estuarine environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low voltage distribution networks feature a high degree of load unbalance and the addition of rooftop photovoltaic is driving further unbalances in the network. Single phase consumers are distributed across the phases but even if the consumer distribution was well balanced when the network was constructed changes will occur over time. Distribution transformer losses are increased by unbalanced loadings. The estimation of transformer losses is a necessary part of the routine upgrading and replacement of transformers and the identification of the phase connections of households allows a precise estimation of the phase loadings and total transformer loss. This paper presents a new technique and preliminary test results for a method of automatically identifying the phase of each customer by correlating voltage information from the utility's transformer system with voltage information from customer smart meters. The techniques are novel as they are purely based upon a time series of electrical voltage measurements taken at the household and at the distribution transformer. Experimental results using a combination of electrical power and current of the real smart meter datasets demonstrate the performance of our techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.