818 resultados para data fitting
em Queensland University of Technology - ePrints Archive
Resumo:
Sugarcane bagasse is an abundant and sustainable resource, generated as a by-product of sugarcane milling. The cellulosic material within bagasse can be broken down into glucose molecules and fermented to produce ethanol, making it a promising feedstock for biofuel production. Mild acid pretreatment hydrolyses the hemicellulosic component of biomass, thus allowing enzymes greater access to the cellulosic substrate during saccharification. A particle-scale mathematical model describing the mild acid pretreatment of sugarcane bagasse has been developed, using a volume averaged framework. Discrete population-balance equations are used to characterise the polymer degradation kinetics, and diffusive effects account for mass transport within the cell wall of the bagasse. As the fibrous material hydrolyses over time, variations in the porosity of the cell wall and the downstream effects on the reaction kinetics are accounted for using conservation of volume arguments. Non-dimensionalization of the model equations reduces the number of parameters in the system to a set of four dimensionless ratios that compare the timescales of different reaction and diffusion events. Theoretical yield curves are compared to macroscopic experimental observations from the literature and inferences are made as to constraints on these “unknown” parameters. These results enable connections to be made between experimental data and the underlying thermodynamics of acid pretreatment. Consequently, the results suggest that data-fitting techniques used to obtain kinetic parameters should be carefully applied, with prudent consideration given to the chemical and physiological processes being modeled.
Resumo:
Cosmetically tinted soft contact lenses are an attractive option for contact lens wearers. Data that we have gathered from annual contact lens fitting surveys demonstrate that those wearing tinted lenses are more likely to be female (4.6% of all soft lenses fitted vs. 1.6% for males; p < 0.0001) and younger (27 11 years vs. 33 13 years for those wearing non-tinted lenses; p < 0.0001). Tinted lenses tend to be worn more on a part-time basis and are replaced less frequently than non-tinted lenses. The decline in fitting tinted lenses over the past 12 years may be due to (a) the current limited availability of tinted lenses in silicone hydrogel materials and daily disposable replacement frequencies, which together represent a significant majority (78%) of new soft lenses fits today, (b) growing concerns among lens wearers and practitioners relating to the risks of complications associated with the wearing of tinted lenses, and (c) reduced promotion of such lenses by the contact lens industry.
Twenty first century trends in silicone hydrogel contact lens fitting : an international perspective
Resumo:
Silicone hydrogel contact lenses were introduced into the market in 1999. To assess prescribing trends of this lens type since then, up to 1000 survey forms were sent to contact lens fitters in Australia, Canada, Japan, the Netherlands, Norway, the UK and the USA each year between 2000 and 2008. Practitioners were asked to record data relating to the first 10 contact lens fits or refits performed after receiving the survey form. Analysis of returned forms revealed a rapid increase in the prescribing of silicone hydrogel lenses over the survey period. In 2008, silicone hydrogel lenses represented 36% of all soft lenses prescribed. The categorization of the majority of lenses prescribed as ‘refits’ is primarily attributed to the mass conversion of lens wearers from hydrogel to silicone hydrogel lenses. Silicone hydrogels may soon represent the majority of soft contact lenses prescribed.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
From human biomonitoring data that are increasingly collected in the United States, Australia, and in other countries from large-scale field studies, we obtain snap-shots of concentration levels of various persistent organic pollutants (POPs) within a cross section of the population at different times. Not only can we observe the trends within this population with time, but we can also gain information going beyond the obvious time trends. By combining the biomonitoring data with pharmacokinetic modeling, we can re-construct the time-variant exposure to individual POPs, determine their intrinsic elimination half-lives in the human body, and predict future levels of POPs in the population. Different approaches have been employed to extract information from human biomonitoring data. Pharmacokinetic (PK) models were combined with longitudinal data1, with single2 or multiple3 average concentrations of a cross-sectional data (CSD), or finally with multiple CSD with or without empirical exposure data4. In the latter study, for the first time, the authors based their modeling outputs on two sets of CSD and empirical exposure data, which made it possible that their model outputs were further constrained due to the extensive body of empirical measurements. Here we use a PK model to analyze recent levels of PBDE concentrations measured in the Australian population. In this study, we are able to base our model results on four sets5-7 of CSD; we focus on two PBDE congeners that have been shown3,5,8-9 to differ in intake rates and half-lives with BDE-47 being associated with high intake rates and a short half-life and BDE-153 with lower intake rates and a longer half-life. By fitting the model to PBDE levels measured in different age groups in different years, we determine the level of intake of BDE-47 and BDE-153, as well as the half-lives of these two chemicals in the Australian population.
Resumo:
Successful anatomic fitting of a total artificial heart (TAH) is vital to achieve optimal pump hemodynamics after device implantation. Although many anatomic fitting studies have been completed in humans prior to clinical trials, few reports exist that detail the experience in animals for in vivo device evaluation. Optimal hemodynamics are crucial throughout the in vivo phase to direct design iterations and ultimately validate device performance prior to pivotal human trials. In vivo evaluation in a sheep model allows a realistically sized representation of a smaller patient, for which smaller third-generation TAHs have the potential to treat. Our study aimed to assess the anatomic fit of a single device rotary TAH in sheep prior to animal trials and to use the data to develop a threedimensional, computer-aided design (CAD)-operated anatomic fitting tool for future TAH development. Following excision of the native ventricles above the atrio-ventricular groove, a prototype TAH was inserted within the chest cavity of six sheep (28–40 kg).Adjustable rods representing inlet and outlet conduits were oriented toward the center of each atrial chamber and the great vessels, with conduit lengths and angles recorded for future analysis. A threedimensional, CAD-operated anatomic fitting tool was then developed, based on the results of this study, and used to determine the inflow and outflow conduit orientation of the TAH. The mean diameters of the sheep left atrium, right atrium, aorta, and pulmonary artery were 39, 33, 12, and 11 mm, respectively. The center-to-center distance and outer-edge-to-outer-edge distance between the atria, found to be 39 ± 9 mm and 72 ± 17 mm in this study, were identified as the most critical geometries for successful TAH connection. This geometric constraint restricts the maximum separation allowable between left and right inlet ports of a TAH to ensure successful alignment within the available atrial circumference.
Resumo:
Purpose To determine the extent of rigid contact lens fitting worldwide and to characterize the associated demographics and fitting patterns. Methods Survey forms were sent to contact lens fitters in up to 40 countries between January and March every year for five consecutive years (2007 to 2011). Practitioners were asked to record data relating to the first 10 contact lens fits or refits performed after receiving the survey form. Survey data collected between 1996 and 2011 were also analyzed to assess rigid lens fitting trends in seven nations during this period. Results Data were obtained for 12,230 rigid and 100,670 soft lens fits between 2007 and 2011. Overall, rigid lenses represented 10.8% of all contact lens fits, ranging from 0.2% in Lithuania to 37% in Malaysia. Compared with soft lens fits, rigid lens fits can be characterized as follows: older age (rigid, 37.3 ± 15.0 years; soft, 29.8 ± 12.4 years); fewer spherical and toric fits; more bifocal/multifocal fits; less frequent replacement (rigid, 7%; soft, 85%); and less part-time wear (rigid, 4%; soft, 10%). High-Dk (contact lens oxygen permeability) (36%) and mid-Dk (42%) materials are predominantly used for rigid lens fitting. Orthokeratology represents 11.5% of rigid contact lens fits. There has been a steady decline in rigid lens fitting between 1996 and 2011. Conclusions Rigid contact lens prescribing is in decline but still represents approximately 10% of all contact lenses fitted worldwide. It is likely that rigid lenses will remain as a viable, albeit increasingly specialized, form of vision correction.
Resumo:
The foliage of a plant performs vital functions. As such, leaf models are required to be developed for modelling the plant architecture from a set of scattered data captured using a scanning device. The leaf model can be used for purely visual purposes or as part of a further model, such as a fluid movement model or biological process. For these reasons, an accurate mathematical representation of the surface and boundary is required. This paper compares three approaches for fitting a continuously differentiable surface through a set of scanned data points from a leaf surface, with a technique already used for reconstructing leaf surfaces. The techniques which will be considered are discrete smoothing D2-splines [R. Arcangeli, M. C. Lopez de Silanes, and J. J. Torrens, Multidimensional Minimising Splines, Springer, 2004.], the thin plate spline finite element smoother [S. Roberts, M. Hegland, and I. Altas, Approximation of a Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions, SIAM, 1 (2003), pp. 208--234] and the radial basis function Clough-Tocher method [M. Oqielat, I. Turner, and J. Belward, A hybrid Clough-Tocher method for surface fitting with application to leaf data., Appl. Math. Modelling, 33 (2009), pp. 2582-2595]. Numerical results show that discrete smoothing D2-splines produce reconstructed leaf surfaces which better represent the original physical leaf.
Resumo:
Quantifying the competing rates of intake and elimination of persistent organic pollutants (POPs) in the human body is necessary to understand the levels and trends of POPs at a population level. In this paper we reconstruct the historical intake and elimination of ten polychlorinated biphenyls (PCBs) and five organochlorine pesticides (OCPs) from Australian biomonitoring data by fitting a population-level pharmacokinetic (PK) model. Our analysis exploits two sets of cross-sectional biomonitoring data for PCBs and OCPs in pooled blood serum samples from the Australian population that were collected in 2003 and 2009. The modeled adult reference intakes in 1975 for PCB congeners ranged from 0.89 to 24.5 ng/kg bw/day, lower than the daily intakes of OCPs ranging from 73 to 970 ng/kg bw/day. Modeled intake rates are declining with half-times from 1.1 to 1.3 years for PCB congeners and 0.83 to 0.97 years for OCPs. The shortest modeled intrinsic human elimination half-life among the compounds studied here is 6.4 years for hexachlorobenzene, and the longest is 30 years for PCB-74. Our results indicate that it is feasible to reconstruct intakes and to estimate intrinsic human elimination half-lives using the population-level PK model and biomonitoring data only. Our modeled intrinsic human elimination half-lives are in good agreement with values from a similar study carried out for the population of the United Kingdom, and are generally longer than reported values from other industrialized countries in the Northern Hemisphere.
Resumo:
For zygosity diagnosis in the absence of genotypic data, or in the recruitment phase of a twin study where only single twins from same-sex pairs are being screened, or to provide a test for sample duplication leading to the false identification of a dizygotic pair as monozygotic, the appropriate analysis of respondents' answers to questions about zygosity is critical. Using data from a young adult Australian twin cohort (N = 2094 complete pairs and 519 singleton twins from same-sex pairs with complete responses to all zygosity items), we show that application of latent class analysis (LCA), fitting a 2-class model, yields results that show good concordance with traditional methods of zygosity diagnosis, but with certain important advantages. These include the ability, in many cases, to assign zygosity with specified probability on the basis of responses of a single informant (advantageous when one zygosity type is being oversampled); and the ability to quantify the probability of misassignment of zygosity, allowing prioritization of cases for genotyping as well as identification of cases of probable laboratory error. Out of 242 twins (from 121 like-sex pairs) where genotypic data were available for zygosity confirmation, only a single case was identified of incorrect zygosity assignment by the latent class algorithm. Zygosity assignment for that single case was identified by the LCA as uncertain (probability of being a monozygotic twin only 76%), and the co-twin's responses clearly identified the pair as dizygotic (probability of being dizygotic 100%). In the absence of genotypic data, or as a safeguard against sample duplication, application of LCA for zygosity assignment or confirmation is strongly recommended.