317 resultados para cumulative sum
em Queensland University of Technology - ePrints Archive
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.
Resumo:
High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.
Resumo:
In previous research (Chung et al., 2009), the potential of the continuous risk profile (CRP) to proactively detect the systematic deterioration of freeway safety levels was presented. In this paper, this potential is investigated further, and an algorithm is proposed for proactively detecting sites where the collision rate is not sufficiently high to be classified as a high collision concentration location but where a systematic deterioration of safety level is observed. The approach proposed compares the weighted CRP across different years and uses the cumulative sum (CUSUM) algorithm to detect the sites where changes in collision rate are observed. The CRPs of the detected sites are then compared for reproducibility. When high reproducibility is observed, a growth factor is used for sequential hypothesis testing to determine if the collision profiles are increasing over time. Findings from applying the proposed method using empirical data are documented in the paper together with a detailed description of the method.
Resumo:
The quick detection of abrupt (unknown) parameter changes in an observed hidden Markov model (HMM) is important in several applications. Motivated by the recent application of relative entropy concepts in the robust sequential change detection problem (and the related model selection problem), this paper proposes a sequential unknown change detection algorithm based on a relative entropy based HMM parameter estimator. Our proposed approach is able to overcome the lack of knowledge of post-change parameters, and is illustrated to have similar performance to the popular cumulative sum (CUSUM) algorithm (which requires knowledge of the post-change parameter values) when examined, on both simulated and real data, in a vision-based aircraft manoeuvre detection problem.
Resumo:
Aims: This paper describes the development of a risk adjustment (RA) model predictive of individual lesion treatment failure in percutaneous coronary interventions (PCI) for use in a quality monitoring and improvement program. Methods and results: Prospectively collected data for 3972 consecutive revascularisation procedures (5601 lesions) performed between January 2003 and September 2011 were studied. Data on procedures to September 2009 (n = 3100) were used to identify factors predictive of lesion treatment failure. Factors identified included lesion risk class (p < 0.001), occlusion type (p < 0.001), patient age (p = 0.001), vessel system (p < 0.04), vessel diameter (p < 0.001), unstable angina (p = 0.003) and presence of major cardiac risk factors (p = 0.01). A Bayesian RA model was built using these factors with predictive performance of the model tested on the remaining procedures (area under the receiver operating curve: 0.765, Hosmer–Lemeshow p value: 0.11). Cumulative sum, exponentially weighted moving average and funnel plots were constructed using the RA model and subjectively evaluated. Conclusion: A RA model was developed and applied to SPC monitoring for lesion failure in a PCI database. If linked to appropriate quality improvement governance response protocols, SPC using this RA tool might improve quality control and risk management by identifying variation in performance based on a comparison of observed and expected outcomes.
Resumo:
The quick detection of an abrupt unknown change in the conditional distribution of a dependent stochastic process has numerous applications. In this paper, we pose a minimax robust quickest change detection problem for cases where there is uncertainty about the post-change conditional distribution. Our minimax robust formulation is based on the popular Lorden criteria of optimal quickest change detection. Under a condition on the set of possible post-change distributions, we show that the widely known cumulative sum (CUSUM) rule is asymptotically minimax robust under our Lorden minimax robust formulation as a false alarm constraint becomes more strict. We also establish general asymptotic bounds on the detection delay of misspecified CUSUM rules (i.e. CUSUM rules that are designed with post- change distributions that differ from those of the observed sequence). We exploit these bounds to compare the delay performance of asymptotically minimax robust, asymptotically optimal, and other misspecified CUSUM rules. In simulation examples, we illustrate that asymptotically minimax robust CUSUM rules can provide better detection delay performance at greatly reduced computation effort compared to competing generalised likelihood ratio procedures.
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
Principal Topic Although corporate entrepreneurship is of vital importance for long-term firm survival and growth (Zahra and Covin, 1995), researchers still struggle with understanding how to manage corporate entrepreneurship activities. Corporate entrepreneurship consists of three parts: innovation, venturing, and renewal processes (Guth and Ginsberg, 1990). Innovation refers to the development of new products, venturing to the creation of new businesses, and renewal to redefining existing businesses (Sharma, and Chrisman, 1999; Verbeke et al., 2007). Although there are many studies focusing on one of these aspects (cf. Burgelman, 1985; Huff et al., 1992), it is very difficult to compare the outcomes of these studies due to differences in contexts, measures, and methodologies. This is a significant lack in our understanding of CE, as firms engage in all three aspects of CE, making it important to compare managerial and organizational antecedents of innovation, venturing and renewal processes. Because factors that may enhance venturing activities may simultaneously inhibit renewal activities. The limited studies that did empirically compare the individual dimensions (cf. Zahra, 1996; Zahra et al., 2000; Yiu and Lau, 2008; Yiu et al., 2007) generally failed to provide a systematic explanation for potential different effects of organizational antecedents on innovation, venturing, and renewal. With this study we aim to investigate the different effects of structural separation and social capital on corporate entrepreneurship activities. The access to existing and the development of new knowledge has been deemed of critical importance in CE-activities (Floyd and Wooldridge, 1999; Covin and Miles, 2007; Katila and Ahuja, 2002). Developing new knowledge can be facilitated by structurally separating corporate entrepreneurial units from mainstream units (cf. Burgelman, 1983; Hill and Rothaermel, 2003; O'Reilly and Tushman, 2004). Existing knowledge and resources are available through networks of social relationships, defined as social capital (Nahapiet and Ghoshal, 1998; Yiu and Lau, 2008). Although social capital has primarily been studied at the organizational level, it might be equally important at top management level (Belliveau et al., 1996). However, little is known about the joint effects of structural separation and integrative mechanisms to provide access to social capital on corporate entrepreneurship. Could these integrative mechanisms for example connect the separated units to facilitate both knowledge creation and sharing? Do these effects differ for innovation, venturing, and renewal processes? Are the effects different for organizational versus top management team integration mechanisms? Corporate entrepreneurship activities have for example been suggested to take place at different levels. Whereas innovation is suggested to be a more bottom-up process, strategic renewal is a more top-down process (Floyd and Lane, 2000; Volberda et al., 2001). Corporate venturing is also a more bottom-up process, but due to the greater required resource commitments relative to innovation, it ventures need to be approved by top management (Burgelman, 1983). As such we will explore the following key research question in this paper: How do social capital and structural separation on organizational and TMT level differentially influence innovation, venturing, and renewal processes? Methodology/Key Propositions We investigated our hypotheses on a final sample of 240 companies in a variety of industries in the Netherlands. All our measures were validated in previous studies. We targeted a second respondent in each firm to reduce problems with single-rater data (James et al., 1984). We separated the measurement of the independent and the dependent variables in two surveys to create a one-year time lag and reduce potential common method bias (Podsakoff et al., 2003). Results and Implications Consistent with our hypotheses, our results show that configurations of structural separation and integrative mechanisms have different effects on the three aspects of corporate entrepreneurship. Innovation was affected by organizational level mechanisms, renewal by integrative mechanisms on top management team level and venturing by mechanisms on both levels. Surprisingly, our results indicated that integrative mechanisms on top management team level had negative effects on corporate entrepreneurship activities. We believe this paper makes two significant contributions. First, we provide more insight in what the effects of ambidextrous organizational forms (i.e. combinations of differentiation and integration mechanisms) are on venturing, innovation and renewal processes. Our findings show that more valuable insights can be gained by comparing the individual parts of corporate entrepreneurship instead of focusing on the whole. Second, we deliver insights in how management can create a facilitative organizational context for these corporate entrepreneurship activities.
Resumo:
In an automotive environment, the performance of a speech recognition system is affected by environmental noise if the speech signal is acquired directly from a microphone. Speech enhancement techniques are therefore necessary to improve the speech recognition performance. In this paper, a field-programmable gate array (FPGA) implementation of dual-microphone delay-and-sum beamforming (DASB) for speech enhancement is presented. As the first step towards a cost-effective solution, the implementation described in this paper uses a relatively high-end FPGA device to facilitate the verification of various design strategies and parameters. Experimental results show that the proposed design can produce output waveforms close to those generated by a theoretical (floating-point) model with modest usage of FPGA resources. Speech recognition experiments are also conducted on enhanced in-car speech waveforms produced by the FPGA in order to compare recognition performance with the floating-point representation running on a PC.
Resumo:
Few studies have evaluated the reliability of lifetime sun exposure estimated from inquiring about the number of hours people spent outdoors in a given period on a typical weekday or weekend day (the time-based approach). Some investigations have suggested that women have a particularly difficult task in estimating time outdoors in adulthood due to their family and occupational roles. We hypothesized that people might gain additional memory cues and estimate lifetime hours spent outdoors more reliably if asked about time spent outdoors according to specific activities (an activity-based approach). Using self-administered, mailed questionnaires, test-retest responses to time-based and to activity-based approaches were evaluated in 124 volunteer radiologic technologist participants from the United States: 64 females and 60 males 48 to 80 years of age. Intraclass correlation coefficients (ICC) were used to evaluate the test-retest reliability of average number of hours spent outdoors in the summer estimated for each approach. We tested the differences between the two ICCs, corresponding to each approach, using a t test with the variance of the difference estimated by the jackknife method. During childhood and adolescence, the two approaches gave similar ICCs for average numbers of hours spent outdoors in the summer. By contrast, compared with the time-based approach, the activity-based approach showed significantly higher ICCs during adult ages (0.69 versus 0.43, P = 0.003) and over the lifetime (0.69 versus 0.52, P = 0.05); the higher ICCs for the activity-based questionnaire were primarily derived from the results for females. Research is needed to further improve the activity-based questionnaire approach for long-term sun exposure assessment. (Cancer Epidemiol Biomarkers Prev 2009;18(2):464–71)
Resumo:
Different international plant protection organisations advocate different schemes for conducting pest risk assessments. Most of these schemes use structured questionnaire in which experts are asked to score several items using an ordinal scale. The scores are then combined using a range of procedures, such as simple arithmetic mean, weighted averages, multiplication of scores, and cumulative sums. The most useful schemes will correctly identify harmful pests and identify ones that are not. As the quality of a pest risk assessment can depend on the characteristics of the scoring system used by the risk assessors (i.e., on the number of points of the scale and on the method used for combining the component scores), it is important to assess and compare the performance of different scoring systems. In this article, we proposed a new method for assessing scoring systems. Its principle is to simulate virtual data using a stochastic model and, then, to estimate sensitivity and specificity values from these data for different scoring systems. The interest of our approach was illustrated in a case study where several scoring systems were compared. Data for this analysis were generated using a probabilistic model describing the pest introduction process. The generated data were then used to simulate the outcome of scoring systems and to assess the accuracy of the decisions about positive and negative introduction. The results showed that ordinal scales with at most 5 or 6 points were sufficient and that the multiplication-based scoring systems performed better than their sum-based counterparts. The proposed method could be used in the future to assess a great diversity of scoring systems.
Resumo:
This paper uses an aggregate quantity space to decompose the temporal changes in nitrogen use efficiency and cumulative exergy use efficiency into changes of Moorsteen–Bjurek (MB) Total Factor Productivity (TFP) changes and changes in the aggregate nitrogen and cumulative exergy contents. Changes in productivity can be broken into technical change and changes in various efficiency measures such as technical efficiency, scale efficiency and residual mix efficiency. Changes in the aggregate nitrogen and cumulative exergy contents can be driven by changes in the quality of inputs and outputs and changes in the mixes of inputs and outputs. Also with cumulative exergy content analysis, changes in the efficiency in input production can increase or decrease the cumulative exergy transformity of agricultural production. The empirical study in 30 member countries of the Organisation for Economic Co-operation Development from 1990 to 2003 yielded some important findings. The production technology progressed but there were reductions in technical efficiency, scale efficiency and residual mix efficiency levels. This result suggests that the production frontier had shifted up but there existed lags in the responses of member countries to the technological change. Given TFP growth, improvements in nutrient use efficiency and cumulative exergy use efficiency were counteracted by reductions in the changes of the aggregate nitrogen contents ratio and aggregate cumulative exergy contents ratio. The empirical results also confirmed that different combinations of inputs and outputs as well as the quality of inputs and outputs could have more influence on the growth of nutrient and cumulative exergy use efficiency than factors that had driven productivity change. Keywords: Nutrient use efficiency; Cumulative exergy use efficiency; Thermodynamic efficiency change; Productivity growth; OECD agriculture; Sustainability