291 resultados para cross-reactivity
em Queensland University of Technology - ePrints Archive
Resumo:
Background Grass pollens are major triggers of allergic rhinitis and asthma, but the immunological relationships between pollen allergens of the subtropical Bahia grass, Paspalum notatum, and temperate grasses are unresolved. Objective To assess serum IgE cross-reactivity between subtropical P. notatum and temperate Lolium perenne (Ryegrass) pollen allergens. Methods Serum IgE reactivities of grass pollen-allergic patients with P. notatum, L. perenne and Cynodon dactylon (Bermuda grass) pollen extracts and their respective purified group 1 allergens, Pas n 1, Lol p 1 and Cyn d 1, were compared by immunoblotting, ELISA and basophil activation. Results In a cohort of 51 patients from a temperate region, a high frequency of IgE reactivity with each grass pollen was detected, but reactivity with L. perenne pollen was substantially greater than with P. notatum and C. dactylon pollen. Similarly, serum IgE reactivity with Lol p 1 was greater than with Pas n 1 or Cyn d 1. For seven of eight sera studied in detail, asymmetric serum IgE cross-reactivity was observed; L. perenne pollen inhibited IgE reactivity with P. notatum pollen but not the converse, and IgE reactivity with Pas n 1 was inhibited by Lol p 1 but IgE reactivity with Lol p 1 was not inhibited by Pas n 1 or Cyn d 1. Importantly, P. notatum pollen and Pas n 1 activated basophils in grass pollen-allergic patients from a temperate region, although stimulation was greater by pollen of L. perenne than P. notatum or C. dactylon, and by Lol p 1 than Pas n 1 or Cyn d 1. In contrast, a cohort of 47 patients from a subtropical region showed similar IgE reactivity with P. notatum and L. perenne pollen, and reciprocal cross-inhibition of IgE reactivity between L. perenne and P. notatum. Conclusions Pollen allergens of the subtropical P. notatum, including Pas n 1, show clinically relevant IgE cross-reactivity with pollen allergens of L. perenne but also species-specific IgE reactivity.
Resumo:
Background The subtropical Bahia grass (Paspalum notatum) is an important source of pollen allergens with an extended season of pollination and wide distribution in warmer climates. The immunological relationship between pollen allergens of Bahia grass and temperate grasses is unresolved. Methods Serum IgE reactivity of grass pollen-allergic patients with Bahia, Ryegrass and Bermuda grass pollen extracts and their purified group 1 allergens, Pas n 1, Lol p 1 and Cyn d 1, were compared by immunoblotting, ELISA, inhibition ELISA, basophil activation by flow cytometry and molecular modeling. Results Differences in antibody recognition of allergenic components between Bahia grass and Ryegrass pollen were observed by immunoblotting. Eight grass pollen-allergic patients from a temperate region showed greater serum IgE reactivity with Ryegrass pollen than Bahia grass by ELISA. For seven of these sera, Ryegrass pollen inhibited IgE reactivity with Bahia grass pollen but not the converse. For 51 sera from grass pollen-allergic patients in this temperate region, IgE reactivity with Lol p 1 was greater than Pas n 1 or Cyn d 1. IgE reactivity with Lol p 1 was not inhibited by Pas n 1 or Cyn d 1, but Pas n 1 IgE reactivity was inhibited by Lol p 1. Two group 1 grass pollen allergen-specific mAb distinguished between temperate and subtropical grass pollens. Basophil activation for three patients tested was greater by Ryegrass pollen than Bahia or Bermuda grass, and by Lol p 1 than Pas n 1 or Cyn d 1. In contrast, two patients from a subtropical region had higher serum IgE reactivity with Bahia grass pollen than Ryegrass and Bahia grass pollen inhibited IgE reactivity with Ryegrass. A structural model of Pas n 1 showed amino acids implicated in IgE epitopes of other group 1 allergens were juxtaposed on the surface. Conclusion Allergens from subtropical Bahia grass pollen, including Pas n 1, share antigenic determinants with temperate grass pollen allergens, but patients exhibit higher serum IgE reactivity to their locally predominant grass pollen. Basophil activation by Bahia grass pollen and Pas n 1 in patients from a temperate climate indicates clinically relevant cross-sensitization between temperate and subtropical grass pollens.
Resumo:
Background: Perennial Ryegrass is a major cause of rhinitis in spring and early summer. Bahia grass, Paspalum notatum, flowers late into summer and could account for allergic rhinitis at this time. We determined the frequency of serum immunoglobulin (Ig)E reactivity with Bahia grass in Ryegrass pollen allergic patients and investigated IgE cross-reactivity between Bahia and Ryegrass. Methods: Serum from 33 Ryegrass pollen allergic patients and 12 nonatopic donors were tested for IgE reactivity with Bahia and Ryegrass pollen extracts (PE) by enzyme-linked immunosorbent assay (ELISA), western blotting and inhibition ELISA. Allergen-specific antibodies from a pool of sera from allergic donors were affinity purified and tested for IgE cross-reactivity. Results: Seventy-eight per cent of the sera had IgE reactivity with Bahia grass, but more weakly than with Ryegrass. Antibodies eluted from the major Ryegrass pollen allergens, Lol p 1 and Lol p 5, showed IgE reactivity with allergens of Ryegrass and Canary but not Bahia or Bermuda grasses. Timothy, Canary and Ryegrass inhibited IgE reactivity with Ryegrass and Bahia grass, whereas Bahia, Johnson and Bermuda grass did not inhibit IgE reactivity with Ryegrass. Conclusions: The majority of Ryegrass allergic patients also showed serum IgE reactivity with Bahia grass PE. However, Bahia grass and Ryegrass had only limited IgE cross-reactivity indicating that Bahia grass should be considered in diagnosis and treatment of patients with hay fever late in' the grass pollen season.
Resumo:
Background Bahia grass pollen (BaGP) is a major cause of allergic rhinitis. Subcutaneous allergen-specific immunotherapy is effective for grass pollen allergy, but is unsuitable for patients with moderate to severe asthma due to the risk of anaphylaxis. T cell-reactive but IgE nonreactive peptides provide a safer treatment option. This study aimed to identify and characterize dominant CD4+ T cell epitope peptides of the major BaGP allergen, Pas n 1. Methods Pas n 1-specific T cell lines generated from the peripheral blood of BaGP-allergic subjects were tested for proliferative and cytokine response to overlapping 20-mer Pas n 1 peptides. Cross-reactivity to homologous peptides from Lol p 1 and Cyn d 1 of Ryegrass and Bermuda grass pollen, respectively, was assessed using Pas n 1 peptide-specific T cell clones. MHC class II restriction of Pas n 1 peptide T cell recognition was determined by HLA blocking assays and peptide IgE reactivity tested by dot blotting. Results Three Pas n 1 peptides showed dominant T cell reactivity; 15 of 18 (83%) patients responded to one or more of these peptides. T cell clones specific for dominant Pas n 1 peptides showed evidence of species-specific T cell reactivity as well as cross-reactivity with other group 1 grass pollen allergens. The dominant Pas n 1 T cell epitope peptides showed HLA binding diversity and were non-IgE reactive. Conclusions The immunodominant T cell-reactive Pas n 1 peptides are candidates for safe immunotherapy for individuals, including those with asthma, who are allergic to Bahia and possibly other grass pollens.
Resumo:
Serum and synovial antibody reactivities of caprine arthritis encephalitis virus (CAEV) infected goats were assessed by Western blotting against purified CAEV antigen and the greatest intensity of reactivity in the serum of arthritic goats was to the gp45 transmembrane protein (TM). The extracytoplasmic domain of the TM gene was cloned into a pGEX vector and expressed in Escherichia coil as a glutathione S transferase fusion protein (GST-TM). This clone was found to be 90.5 and 89.2% homologous to published sequences of CAEV TM gene. Serum of 16 goats naturally infected with CAEV were examined by Western blotting for reactivity to the fusion protein. Antibody reactivity to the GST-TM correlated with clinically detectable arthritis (R = 0.642, P ≤ 0.007). The hypothesis that the immune response to the envelope proteins of the CAEV contributes to the severity of arthritis in goats naturally infected with CAEV via epitope mimicry was tested. Antibodies from 5 CAEV infected goats were affinity purified against the GST-TM fusion protein and tested for cross-reactivity with a series of goat synovial extracts and proteogylcans. No serum antibody response or cross-reactivity of affinity purified antibodies could be detected. Peptides of the CAEV SU that were predicted to be linear epitopes and a similar heat shock protein 83 (HSP) peptide identified by database searching, were synthesized and tested for reactivity in CAEV goats using ELISA, in vitro lymphocyte proliferation and delayed type hypersensitivity (DTH) assays. Peripheral blood lymphocytes from 10 of 17 goats with long term natural CAEV infections proliferated in vitro in response to CAEV and in vivo 3 of 7 CAEV infected goats had a DTH reaction to CAEV antigen. However, none of the peptides elicited significant cell mediated immune responses from CAEV infected goats. No antibody reactivity to the SU peptides or HSP peptide was found. We observed that the antibody reactivity to the CAEV TM protein associated with severity of arthritis however epitope mimicry by the envelope proteins of CAEV is unlikely to be involved.
Development of commercial assays for rapid serological diagnosis of dengue and Japanese encephalitis
Resumo:
Background Pollens of subtropical grasses, Bahia (Paspalum notatum), Johnson (Sorghum halepense), and Bermuda (Cynodon dactylon), are common causes of respiratory allergies in subtropical regions worldwide. Objective To evaluate IgE cross-reactivity of grass pollen (GP) found in subtropical and temperate areas. Methods Case and control serum samples from 83 individuals from the subtropical region of Queensland were tested for IgE reactivity with GP extracts by enzyme-linked immunosorbent assay. A randomly sampled subset of 21 serum samples from patients with subtropical GP allergy were examined by ImmunoCAP and cross-inhibition assays. Results Fifty-four patients with allergic rhinitis and GP allergy had higher IgE reactivity with P notatum and C dactylon than with a mixture of 5 temperate GPs. For 90% of 21 GP allergic serum samples, P notatum, S halepense, or C dactylon specific IgE concentrations were higher than temperate GP specific IgE, and GP specific IgE had higher correlations of subtropical GP (r = 0.771-0.950) than temperate GP (r = 0.317-0.677). In most patients (71%-100%), IgE with P notatum, S halepense, or C dactylon GPs was inhibited better by subtropical GP than temperate GP. When the temperate GP mixture achieved 50% inhibition of IgE with subtropical GP, there was a 39- to 67-fold difference in concentrations giving 50% inhibition and significant differences in maximum inhibition for S halepense and P notatum GP relative to temperate GP. Conclusion Patients living in a subtropical region had species specific IgE recognition of subtropical GP. Most GP allergic patients in Queensland would benefit from allergen specific immunotherapy with a standardized content of subtropical GP allergens.
Resumo:
Two monoclonal antibodies (mAb) CB268 and CII-C1 to type II collagen (CII) react with precisely the same conformational epitope constituted by the residues ARGLT on the three chains of the CII triple helix. The antibodies share structural similarity, with most differences in the complementarity determining region 3 of the heavy chain (HCDR3). The fine reactivity of these mAbs was investigated by screening two nonameric phage-displayed random peptide libraries. For each mAb, there were phage clones (phagotopes) that reacted strongly by ELISA only with the selecting mAb, and inhibited binding to CII only for that mAb, not the alternate mAb. Nonetheless, a synthetic peptide RRLPFGSQM corresponding to an insert from a highly reactive CII-C1-selected phagotope, which was unreactive (and non-inhibitory) with CB268, inhibited the reactivity of CB268 with CII. Most phage-displayed peptides contained a motif in the first part of the molecule that consisted of two basic residues adjacent to at least one hydrophobic residue (e.g. RRL or LRR), but the second portion of the peptides differed for the two mAbs. We predict that conserved CDR sequences interact with the basic-basic-hydrophobic motif, whereas non-conserved amino acids in the binding sites (especially HCDR3) interact with unique peptide sequences and limit cross-reactivity. The observation that two mAbs can react identically with a single epitope on one antigen (CII), but show no cross-reactivity when tested against a second (phagotope) indicates that microorganisms could exhibit mimics capable of initiating autoimmunity without this being evident from conventional assays.
Resumo:
The major diabetes autoantigen, glutamic acid decarboxylase (GAD65), contains a region of sequence similarity, including six identical residues PEVKEK, to the P2C protein of coxsackie B virus, suggesting that cross-reactivity between coxsackie B virus and GAD65 can initiate autoimmune diabetes. We used the human islet cell mAbs MICA3 and MICA4 to identify the Ab epitopes of GAD65 by screening phage-displayed random peptide libraries. The identified peptide sequences could be mapped to a homology model of the pyridoxal phosphate (PLP) binding domain of GAD65. For MICA3, a surface loop containing the sequence PEVKEK and two adjacent exposed helixes were identified in the PLP binding domain as well as a region of the C terminus of GAD65 that has previously been identified as critical for MICA3 binding. To confirm that the loop containing tile PEVKEK sequence contributes to the MICA3 epitope, this loop was deleted by mutagenesis. This reduced binding of MICA3 by 70%. Peptide sequences selected using MICA4 were rich in basic or hydroxyl-containing amino acids, and the surface of the GAD65 PLP-binding domain surrounding Lys358, which is known to be critical for MICA4 binding, was likewise rich in these amino acids. Also, the two phage most reactive width MICA4 encoded the motif VALxG, and the reverse of this sequence, LAV, was located in this same region. Thus, we have defined the MICA3 and MICA4 epitopes on GAD65 using the combination of phage display, molecular modeling, and mutagenesis and have provided compelling evidence for the involvement of the PEVKEK loop in the MICA3 epitope.
Resumo:
The causes of autoimmune diseases have yet to be fully elucidated. Autoantibodies, autoreactive T cell responses, the presence of a predisposing major histocompatibility complex (MHC) haplotype and responsiveness to corticosteroids are features, and some are possibly contributory causes of autoimmune disease. The most challenging question is how autoimmune diseases are triggered. Molecular mimicry of host cell determinants by epitopes of infectious agents with ensuing cross-reactivity is one of the most popular yet still controversial theories for the initiation of autoimmune diseases [1]. Throughout the 1990s, hundreds of research articles focusing to various extents on epitope mimicry, as it is more accurately described in an immunological context, were published annually. Many of these articles presented data that were consistent with the hypothesis of mimicry but that did not actually prove the theory. Other equally convincing reports indicated that epitope mimicry was not the cause of the autoimmune disease despite sequence similarity between molecules of infectious agents and the host. Some 20 years ago, Rothman [2] proposed a model for disease causation and I have used this as a framework to examine the role of epitope mimicry in the development of autoimmune disease. The thesis of Rothman’s model is that an effect, in this instance autoimmune disease, arises as a result of a cause. In most cases, multiple-component causes contribute synergistically to yield the effect, and each of these components alone is insufficient as a cause. Logically, some component causes, such as the presence of a particular autoimmune response, are also necessary causes.
Resumo:
Mimicry of host antigens by infectious agents may induce cross-reactive autoimmune responses to epitopes within host proteins which, in susceptible individuals, may tip the balance of immunological response versus tolerance toward response and subsequently lead to autoimmune disease. Epitope mimicry may indeed be involved in the pathogenesis of several diseases such as post-viral myocarditis or Chagas disease, but for many other diseases in which it has been implicated, such as insulin-dependent diabetes mellitis or rheumatoid arthritis, convincing evidence is still lacking. Even if an epitope mimic can support a cross-reactive T or B cell response in vitro, its ability to induce an autoimmune disease in vivo will depend upon the appropriate presentation of the mimicked host antigen in the target tissue and, in the case of T cell mimics, the ability of the mimicking epitope to induce a proliferative rather than anergizing response upon engagement of the MHC-peptide complex with the T cell receptor. B cell presentation of mimicking foreign antigen to T cells is a possible mechanism for instigating an autoimmune response to self antigens that in turn can lead to autoimmune disease under particular conditions of antigen presentation, secondary signalling and effector cell repertoire. In this review evidence in support of epitope mimicry is examined in the light of the necessary immunological considerations of the theory.
Resumo:
The reactivity to a peptide from the HTLV-I polyprotein (FKLPGLNSR) and a similar sequence from myelin basic protein (MBP) (FKLGGRDSR) was examined in relation to the proposal that mimicry of MBP by HTLV-I could be involved in autoimmune responses in HTLV-I-associated myelopathy (HAM). It was found that rabbit antibodies raised against the HTLV-I peptide recognised both peptides, with a titre of 1/10240 to the HTLV-I peptide and 1/5220 to the MBP peptide. Human sera from HAM patients and a HTLV-I carrier without HAM showed slightly higher responses to the HTLV-I peptide compared to the responses from uninfected human sera. HAM patients had greater responses to the HTLV-I peptide than to the similar MBP peptide and an unrelated bovine MBP peptide. There was no recognition of the peptides by peripheral blood lymphocytes from HAM patients or a HTLV-I carrier without HAM. It was concluded that although cross-reactivity was demonstrated in rabbits and the HTLV-I peptide was recognised by sera from HAM patients, the epitope does not appear to evoke a mimicking response to the similar region in MBP. Hence it is not likely to be involved in the pathogenesis of HAM through molecular mimicry.
Resumo:
The information on climate variations is essential for the research of many subjects, such as the performance of buildings and agricultural production. However, recorded meteorological data are often incomplete. There may be a limited number of locations recorded, while the number of recorded climatic variables and the time intervals can also be inadequate. Therefore, the hourly data of key weather parameters as required by many building simulation programmes are typically not readily available. To overcome this gap in measured information, several empirical methods and weather data generators have been developed. They generally employ statistical analysis techniques to model the variations of individual climatic variables, while the possible interactions between different weather parameters are largely ignored. Based on a statistical analysis of 10 years historical hourly climatic data over all capital cities in Australia, this paper reports on the finding of strong correlations between several specific weather variables. It is found that there are strong linear correlations between the hourly variations of global solar irradiation (GSI) and dry bulb temperature (DBT), and between the hourly variations of DBT and relative humidity (RH). With an increase in GSI, DBT would generally increase, while the RH tends to decrease. However, no such a clear correlation can be found between the DBT and atmospheric pressure (P), and between the DBT and wind speed. These findings will be useful for the research and practice in building performance simulation.
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.