115 resultados para constraint solving
em Queensland University of Technology - ePrints Archive
Resumo:
Construction projects are faced with a challenge that must not be underestimated. These projects are increasingly becoming highly competitive, more complex, and difficult to manage. They become ‘wicked problems’, which are difficult to solve using traditional approaches. Soft Systems Methodology (SSM) is a systems approach that is used for analysis and problem solving in such complex and messy situations. SSM uses “systems thinking” in a cycle of action research, learning and reflection to help understand the various perceptions that exist in the minds of the different people involved in the situation. This paper examines the benefits of applying SSM to wicked problems in construction project management, especially those situations that are challenging to understand and difficult to act upon. It includes relevant examples of its use in dealing with the confusing situations that incorporate human, organizational and technical aspects.
Resumo:
Novice programmers have difficulty developing an algorithmic solution while simultaneously obeying the syntactic constraints of the target programming language. To see how students fare in algorithmic problem solving when not burdened by syntax, we conducted an experiment in which a large class of beginning programmers were required to write a solution to a computational problem in structured English, as if instructing a child, without reference to program code at all. The students produced an unexpectedly wide range of correct, and attempted, solutions, some of which had not occurred to their teachers. We also found that many common programming errors were evident in the natural language algorithms, including failure to ensure loop termination, hardwiring of solutions, failure to properly initialise the computation, and use of unnecessary temporary variables, suggesting that these mistakes are caused by inexperience at thinking algorithmically, rather than difficulties in expressing solutions as program code.
Resumo:
Although various studies have shown that groups are more productive than individuals in complex mathematical problem solving, not all groups work together cooperatively. This review highlights that addressing organisational and cognitive factors to help scaffold group mathematical problem solving is necessary but not sufficient. Successful group problem solving also needs to incorporate metacognitive factors in order for groups to reflect on the organisational and cognitive factors influencing their group mathematical problem solving.
Resumo:
Since the 1960s, numerous studies on problem solving have revealed the complexity of the domain and the difficulty in translating research findings into practice. The literature suggests that the impact of problem solving research on the mathematics curriculum has been limited. Furthermore, our accumulation of knowledge on the teaching of problem solving is lagging. In this first discussion paper we initially present a sketch of 50 years of research on mathematical problem solving. We then consider some factors that have held back problem solving research over the past decades and offer some directions for how we might advance the field. We stress the urgent need to take into account the nature of problem solving in various arenas of today’s world and to accordingly modernize our perspectives on the teaching and learning of problem solving and of mathematical content through problem solving. Substantive theory development is also long overdue—we show how new perspectives on the development of problem solving expertise can contribute to theory development in guiding the design of worthwhile learning activities. In particular, we explore a models and modeling perspective as an alternative to existing views on problem solving.
Resumo:
This paper is the second in a pair that Lesh, English, and Fennewald will be presenting at ICME TSG 19 on Problem Solving in Mathematics Education. The first paper describes three shortcomings of past research on mathematical problem solving. The first shortcoming can be seen in the fact that knowledge has not accumulated – in fact it has atrophied significantly during the past decade. Unsuccessful theories continue to be recycled and embellished. One reason for this is that researchers generally have failed to develop research tools needed to reliably observe, document, and assess the development of concepts and abilities that they claim to be important. The second shortcoming is that existing theories and research have failed to make it clear how concept development (or the development of basic skills) is related to the development of problem solving abilities – especially when attention is shifted beyond word problems found in school to the kind of problems found outside of school, where the requisite skills and even the questions to be asked might not be known in advance. The third shortcoming has to do with inherent weaknesses in observational studies and teaching experiments – and the assumption that a single grand theory should be able to describe all of the conceptual systems, instructional systems, and assessment systems that strongly molded and shaped by the same theoretical perspectives that are being used to develop them. Therefore, this paper will describe theoretical perspectives and methodological tools that are proving to be effective to combat the preceding kinds or shortcomings. We refer to our theoretical framework as models & modeling perspectives (MMP) on problem solving (Lesh & Doerr, 2003), learning, and teaching. One of the main methodologies of MMP is called multi-tier design studies (MTD).
Resumo:
Little research has been conducted on how students work when they are required to plan, build and evaluate artefacts in technology rich learning environments such as those supported by tools including flow charts, Labview programming and Lego construction. In this study, activity theory was used as an analytic tool to examine the social construction of meaning. There was a focus on the effect of teachers’ goals and the rules they enacted upon student use of the flow chart planning tool, and the tools of the programming language Labview and Lego construction. It was found that the articulation of a teacher’s goals via rules and divisions of labour helped to form distinct communities of learning and influenced the development of different problem solving strategies. The use of the planning tool flow charting was associated with continuity of approach, integration of problem solutions including appreciation of the nexus between construction and programming, and greater educational transformation. Students who flow charted defined problems in a more holistic way and demonstrated more methodical, insightful and integrated approaches to their use of tools. The findings have implications for teaching in design dominated learning environments.
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.