11 resultados para combinatorics
em Queensland University of Technology - ePrints Archive
Resumo:
Resolving a noted open problem, we show that the Undirected Feedback Vertex Set problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G, k) to a decision-equivalent simplified instance (G', k') where k' � k, and the number of vertices of G' is bounded by a polynomial function of k. Our main result shows an O(k11) kernelization bound.
Resumo:
Key establishment is a crucial cryptographic primitive for building secure communication channels between two parties in a network. It has been studied extensively in theory and widely deployed in practice. In the research literature a typical protocol in the public-key setting aims for key secrecy and mutual authentication. However, there are many important practical scenarios where mutual authentication is undesirable, such as in anonymity networks like Tor, or is difficult to achieve due to insufficient public-key infrastructure at the user level, as is the case on the Internet today. In this work we are concerned with the scenario where two parties establish a private shared session key, but only one party authenticates to the other; in fact, the unauthenticated party may wish to have strong anonymity guarantees. We present a desirable set of security, authentication, and anonymity goals for this setting and develop a model which captures these properties. Our approach allows for clients to choose among different levels of authentication. We also describe an attack on a previous protocol of Øverlier and Syverson, and present a new, efficient key exchange protocol that provides one-way authentication and anonymity.
Resumo:
Secure communications in wireless sensor networks operating under adversarial conditions require providing pairwise (symmetric) keys to sensor nodes. In large scale deployment scenarios, there is no prior knowledge of post deployment network configuration since nodes may be randomly scattered over a hostile territory. Thus, shared keys must be distributed before deployment to provide each node a key-chain. For large sensor networks it is infeasible to store a unique key for all other nodes in the key-chain of a sensor node. Consequently, for secure communication either two nodes have a key in common in their key-chains and they have a wireless link between them, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path have a key in common. Length of the key-path is the key factor for efficiency of the design. This paper presents novel deterministic and hybrid approaches based on Combinatorial Design for deciding how many and which keys to assign to each key-chain before the sensor network deployment. In particular, Balanced Incomplete Block Designs (BIBD) and Generalized Quadrangles (GQ) are mapped to obtain efficient key distribution schemes. Performance and security properties of the proposed schemes are studied both analytically and computationally. Comparison to related work shows that the combinatorial approach produces better connectivity with smaller key-chain sizes.
Resumo:
In a traditional anti-jamming system a transmitter who wants to send a signal to a single receiver spreads the signal power over a wide frequency spectrum with the aim of stopping a jammer from blocking the transmission. In this paper, we consider the case that there are multiple receivers and the transmitter wants to broadcast a message to all receivers such that colluding groups of receivers cannot jam the reception of any other receiver. We propose efficient coding methods that achieve this goal and link this problem to well-known problems in combinatorics. We also link a generalisation of this problem to the Key Distribution Pattern problem studied in combinatorial cryptography.
Resumo:
A set system (X, F ) with X= {x 1,...,x m}) and F = {B1...,B n }, where B i ⊆ X, is called an (n, m) cover-free set system (or CF set system) if for any 1 ≤ i, j, k ≤ n and j ≠ k, |B i >2 |B j ∩ B k | +1. In this paper, we show that CF set systems can be used to construct anonymous membership broadcast schemes (or AMB schemes), allowing a center to broadcast a secret identity among a set of users in a such way that the users can verify whether or not the broadcast message contains their valid identity. Our goal is to construct (n, m) CF set systems in which for given m the value n is as large as possible. We give two constructions for CF set systems, the first one from error-correcting codes and the other from combinatorial designs. We link CF set systems to the concept of cover-free family studied by Erdös et al in early 80’s to derive bounds on parameters of CF set systems. We also discuss some possible extensions of the current work, motivated by different application.
Resumo:
Multi-party key agreement protocols indirectly assume that each principal equally contributes to the final form of the key. In this paper we consider three malleability attacks on multi-party key agreement protocols. The first attack, called strong key control allows a dishonest principal (or a group of principals) to fix the key to a pre-set value. The second attack is weak key control in which the key is still random, but the set from which the key is drawn is much smaller than expected. The third attack is named selective key control in which a dishonest principal (or a group of dishonest principals) is able to remove a contribution of honest principals to the group key. The paper discusses the above three attacks on several key agreement protocols, including DH (Diffie-Hellman), BD (Burmester-Desmedt) and JV (Just-Vaudenay). We show that dishonest principals in all three protocols can weakly control the key, and the only protocol which does not allow for strong key control is the DH protocol. The BD and JV protocols permit to modify the group key by any pair of neighboring principals. This modification remains undetected by honest principals.
Resumo:
Projective Hjelmslev planes and affine Hjelmslev planes are generalisations of projective planes and affine planes. We present an algorithm for constructing projective Hjelmslev planes and affine Hjelmslev planes that uses projective planes, affine planes and orthogonal arrays. We show that all 2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelmslev planes can be constructed in this way. As a corollary it is shown that all $2$-uniform affine Hjelmslev planes are sub-geometries of $2$-uniform projective Hjelmslev planes.
Resumo:
A pair of Latin squares, A and B, of order n, is said to be pseudo-orthogonal if each symbol in A is paired with every symbol in B precisely once, except for one symbol with which it is paired twice and one symbol with which it is not paired at all. A set of t Latin squares, of order n, are said to be mutually pseudo-orthogonal if they are pairwise pseudo-orthogonal. A special class of pseudo-orthogonal Latin squares are the mutually nearly orthogonal Latin squares (MNOLS) first discussed in 2002, with general constructions given in 2007. In this paper we develop row complete MNOLS from difference covering arrays. We will use this connection to settle the spectrum question for sets of 3 mutually pseudo-orthogonal Latin squares of even order, for all but the order 146.