359 resultados para collision attack
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper we present concrete collision and preimage attacks on a large class of compression function constructions making two calls to the underlying ideal primitives. The complexity of the collision attack is above the theoretical lower bound for constructions of this type, but below the birthday complexity; the complexity of the preimage attack, however, is equal to the theoretical lower bound. We also present undesirable properties of some of Stam’s compression functions proposed at CRYPTO ’08. We show that when one of the n-bit to n-bit components of the proposed 2n-bit to n-bit compression function is replaced by a fixed-key cipher in the Davies-Meyer mode, the complexity of finding a preimage would be 2 n/3. We also show that the complexity of finding a collision in a variant of the 3n-bits to 2n-bits scheme with its output truncated to 3n/2 bits is 2 n/2. The complexity of our preimage attack on this hash function is about 2 n . Finally, we present a collision attack on a variant of the proposed m + s-bit to s-bit scheme, truncated to s − 1 bits, with a complexity of O(1). However, none of our results compromise Stam’s security claims.
Resumo:
RC4-Based Hash Function is a new proposed hash function based on RC4 stream cipher for ultra low power devices. In this paper, we analyse the security of the function against collision attack. It is shown that the attacker can find collision and multi-collision messages with complexity only 6 compress function operations and negligible memory with time complexity 2 13. In addition, we show the hashing algorithm can be distinguishable from a truly random sequence with probability close to one.
Resumo:
In this paper we present a cryptanalysis of a new 256-bit hash function, FORK-256, proposed by Hong et al. at FSE 2006. This cryptanalysis is based on some unexpected differentials existing for the step transformation. We show their possible uses in different attack scenarios by giving a 1-bit (resp. 2-bit) near collision attack against the full compression function of FORK-256 running with complexity of 2^125 (resp. 2^120) and with negligible memory, and by exhibiting a 22-bit near pseudo-collision. We also show that we can find collisions for the full compression function with a small amount of memory with complexity not exceeding 2^126.6 hash evaluations. We further show how to reduce this complexity to 2^109.6 hash computations by using 273 memory words. Finally, we show that this attack can be extended with no additional cost to find collisions for the full hash function, i.e. with the predefined IV.
Resumo:
In this paper, we analyze the SHAvite-3-512 hash function, as proposed and tweaked for round 2 of the SHA-3 competition. We present cryptanalytic results on 10 out of 14 rounds of the hash function SHAvite-3-512, and on the full 14 round compression function of SHAvite-3-512. We show a second preimage attack on the hash function reduced to 10 rounds with a complexity of 2497 compression function evaluations and 216 memory. For the full 14-round compression function, we give a chosen counter, chosen salt preimage attack with 2384 compression function evaluations and 2128 memory (or complexity 2448 without memory), and a collision attack with 2192 compression function evaluations and 2128 memory.
Resumo:
Many RFID protocols use cryptographic hash functions for their security. The resource constrained nature of RFID systems forces the use of light weight cryptographic algorithms. Tav-128 is one such 128-bit light weight hash function proposed by Peris-Lopez et al. for a low-cost RFID tag authentication protocol. Apart from some statistical tests for randomness by the designers themselves, Tav-128 has not undergone any other thorough security analysis. Based on these tests, the designers claimed that Tav-128 does not posses any trivial weaknesses. In this article, we carry out the first third party security analysis of Tav-128 and show that this hash function is neither collision resistant nor second preimage resistant. Firstly, we show a practical collision attack on Tav-128 having a complexity of 237 calls to the compression function and produce message pairs of arbitrary length which produce the same hash value under this hash function. We then show a second preimage attack on Tav-128 which succeeds with a complexity of 262 calls to the compression function. Finally, we study the constituent functions of Tav-128 and show that the concatenation of nonlinear functions A and B produces a 64-bit permutation from 32-bit messages. This could be a useful light weight primitive for future RFID protocols.
Resumo:
In the modern era of information and communication technology, cryptographic hash functions play an important role in ensuring the authenticity, integrity, and nonrepudiation goals of information security as well as efficient information processing. This entry provides an overview of the role of hash functions in information security, popular hash function designs, some important analytical results, and recent advances in this field.
Resumo:
In a paper published in FSE 2007, a way of obtaining near-collisions and in theory also collisions for the FORK-256 hash function was presented [8]. The paper contained examples of near-collisions for the compression function, but in practice the attack could not be extended to the full function due to large memory requirements and computation time. In this paper we improve the attack and show that it is possible to find near-collisions in practice for any given value of IV. In particular, this means that the full hash function with the prespecified IV is vulnerable in practice, not just in theory. We exhibit an example near-collision for the complete hash function.
Resumo:
Cooperative collision warning system for road vehicles, enabled by recent advances in positioning systems and wireless communication technologies, can potentially reduce traffic accident significantly. To improve the system, we propose a graph model to represent interactions between multiple road vehicles in a specific region and at a specific time. Given a list of vehicles in vicinity, we can generate the interaction graph using several rules that consider vehicle's properties such as position, speed, heading, etc. Safety applications can use the model to improve emergency warning accuracy and optimize wireless channel usage. The model allows us to develop some congestion control strategies for an efficient multi-hop broadcast protocol.
Resumo:
Integral attacks are well-known to be effective against byte-based block ciphers. In this document, we outline how to launch integral attacks against bit-based block ciphers. This new type of integral attack traces the propagation of the plaintext structure at bit-level by incorporating bit-pattern based notations. The new notation gives the attacker more details about the properties of a structure of cipher blocks. The main difference from ordinary integral attacks is that we look at the pattern the bits in a specific position in the cipher block has through the structure. The bit-pattern based integral attack is applied to Noekeon, Serpent and present reduced up to 5, 6 and 7 rounds, respectively. This includes the first attacks on Noekeon and present using integral cryptanalysis. All attacks manage to recover the full subkey of the final round.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.