344 resultados para cloud infrastructure
em Queensland University of Technology - ePrints Archive
Resumo:
The Internet of Things facilitates the identification, digitization, and control of physical objects. However, it is the availability of cost effective sensors, mobile smart devices, scalable cloud infrastructure, and advanced analytics that have consumerized the Internet of Things. The accessibility of digital representations of things has transformative potential and provides entire new affordances for organizations and their ecosystems across most industries.
Resumo:
Monitoring the environment with acoustic sensors is an effective method for understanding changes in ecosystems. Through extensive monitoring, large-scale, ecologically relevant, datasets can be produced that can inform environmental policy. The collection of acoustic sensor data is a solved problem; the current challenge is the management and analysis of raw audio data to produce useful datasets for ecologists. This paper presents the applied research we use to analyze big acoustic datasets. Its core contribution is the presentation of practical large-scale acoustic data analysis methodologies. We describe details of the data workflows we use to provide both citizen scientists and researchers practical access to large volumes of ecoacoustic data. Finally, we propose a work in progress large-scale architecture for analysis driven by a hybrid cloud-and-local production-grade website.
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.
Resumo:
Cloud computing is a currently developing revolution in information technology that is disturbing the way that individuals and corporate entities operate while enabling new distributed services that have not existed before. At the foundation of cloud computing is the broader concept of converged infrastructure and shared services. Security is often said to be a major concern of users considering migration to cloud computing. This article examines some of these security concerns and surveys recent research efforts in cryptography to provide new technical mechanisms suitable for the new scenarios of cloud computing. We consider techniques such as homomorphic encryption, searchable encryption, proofs of storage, and proofs of location. These techniques allow cloud computing users to benefit from cloud server processing capabilities while keeping their data encrypted; and to check independently the integrity and location of their data. Overall we are interested in how users may be able to maintain and verify their own security without having to rely on the trust of the cloud provider.
Resumo:
Introduction When it comes to sustainable economic development, it is hard to go past the thought of investment in information technology (IT). The foundation of sustainable economic development is sustainable infrastructure. This situation means that investment in IT is about developing sustainable IT infrastructure. An IT infrastructure is a set of IT tools on which organisations could develop applications to manage their varying business processes. At a national economic level, this is all about developing a national IT infrastructure to provide social and economic services to the various stakeholders. Current troubling economic times call for collaboration and centrality in IT infrastructure development. This notion has led to the idea of national broadband networks, sustainable telecommunication platforms, and national IT development plans and goals. However, these thoughts and actions do not directly impact the critical social and economic processes of organisations. That is, these thoughts set the tone and direction of actions
Resumo:
Cloud Computing, based on early virtual computer concepts and technologies, is now itself a maturing technology in the marketplace and it has revolutionized the IT industry, being the powerful platform that many businesses are choosing to migrate their in-premises IT services onto. Cloud solution has the potential to reduce the capital and operational expenses associated with deploying IT services on their own. In this study, we have implemented our own private cloud solution, infrastructure as a service (IaaS), using the OpenStack platform with high availability and a dynamic resource allocation mechanism. Besides, we have hosted unified communication as a service (UCaaS) in the underlying IaaS and successfully tested voice over IP (VoIP), video conferencing, voice mail and instant messaging (IM) with clients located at the remote site. The proposed solution has been developed in order to give advice to bussinesses that want to build their own cloud environment, IaaS and host cloud services and applicatons in the cloud. This paper also aims at providing an alternate option for proprietary cloud solutions for service providers to consider.