608 resultados para chromosome 2
em Queensland University of Technology - ePrints Archive
Resumo:
Wing length is a key character for essential behaviours related to bird flight such as migration and foraging. In the present study, we initiate the search for the genes underlying wing length in birds by studying a long-distance migrant, the great reed warbler (Acrocephalus arundinaceus). In this species wing length is an evolutionary interesting trait with pronounced latitudinal gradient and sex-specific selection regimes in local populations. We performed a quantitative trait locus (QTL) scan for wing length in great reed warblers using phenotypic, genotypic, pedigree and linkage map data from our long-term study population in Sweden. We applied the linkage analysis mapping method implemented in GRIDQTL (a new web-based software) and detected a genome-wide significant QTL for wing length on chromosome 2, to our knowledge, the first detected QTL in wild birds. The QTL extended over 25 cM and accounted for a substantial part (37%) of the phenotypic variance of the trait. A genome scan for tarsus length (a bodysize-related trait) did not show any signal, implying that the wing-length QTL on chromosome 2 was not associated with body size. Our results provide a first important step into understanding the genetic architecture of avian wing length, and give opportunities to study the evolutionary dynamics of wing length at the locus level. This journal is© 2010 The Royal Society.
Resumo:
BACKGROUND: Familial isolated hyperparathyroidism (FIHP) is an autosomal dominantly inherited form of primary hyperparathyroidism. Although comprising only about 1% of cases of primary hyperparathyroidism, identification and functional analysis of a causative gene for FIHP is likely to advance our understanding of parathyroid physiology and pathophysiology. METHODS: A genome-wide screen of DNA from seven pedigrees with FIHP was undertaken in order to identify a region of genetic linkage with the disorder. RESULTS: Multipoint linkage analysis identified a region of suggestive linkage (LOD score 2.68) on chromosome 2. Fine mapping with the addition of three other families revealed significant linkage adjacent to D2S2368 (maximum multipoint LOD score 3.43). Recombination events defined a 1.7 Mb region of linkage between D2S2368 and D2S358 in nine pedigrees. Sequencing of the two most likely candidate genes in this region, however, did not identify a gene for FIHP. CONCLUSIONS: We conclude that a causative gene for FIHP lies within this interval on chromosome 2. This is a major step towards eventual precise identification of a gene for FIHP, likely to be a key component in the genetic regulation of calcium homeostasis.
Resumo:
Background The purpose of this study was to identify candidate metastasis suppressor genes from a mouse allograft model of prostate cancer (NE-10). This allograft model originally developed metastases by twelve weeks after implantation in male athymic nude mice, but lost the ability to metastasize after a number of in vivo passages. We performed high resolution array comparative genomic hybridization on the metastasizing and non-metastasizing allografts to identify chromosome imbalances that differed between the two groups of tumors. Results This analysis uncovered a deletion on chromosome 2 that differed between the metastasizing and non-metastasizing tumors. Bioinformatics filters were employed to mine this region of the genome for candidate metastasis suppressor genes. Of the 146 known genes that reside within the region of interest on mouse chromosome 2, four candidate metastasis suppressor genes (Slc27a2, Mall, Snrpb, and Rassf2) were identified. Quantitative expression analysis confirmed decreased expression of these genes in the metastasizing compared to non-metastasizing tumors. Conclusion This study presents combined genomics and bioinformatics approaches for identifying potential metastasis suppressor genes. The genes identified here are candidates for further studies to determine their functional role in inhibiting metastases in the NE-10 allograft model and human prostate cancer.
Resumo:
Genetic factors contribute to risk of many common diseases affecting reproduction and fertility. In recent years, methods for genome-wide association studies(GWAS) have revolutionized gene discovery forcommontraits and diseases. Results of GWAS are documented in the Catalog of Published Genome-Wide Association Studies at the National Human Genome Research Institute and report over 70 publications for 32 traits and diseases associated with reproduction. These include endometriosis, uterine fibroids, age at menarche and age at menopause. Results that pass appropriate stringent levels of significance are generally well replicated in independent studies. Examples of genetic variation affecting twinning rate, infertility, endometriosis and age at menarche demonstrate that the spectrum of disease-related variants for reproductive traits is similar to most other common diseases.GWAS 'hits' provide novel insights into biological pathways and the translational value of these studies lies in discovery of novel gene targets for biomarkers, drug development and greater understanding of environmental factors contributing to disease risk. Results also show that genetic data can help define sub-types of disease and co-morbidity with other traits and diseases. To date, many studies on reproductive traits have used relatively small samples. Future genetic marker studies in large samples with detailed phenotypic and clinical information will yield new insights into disease risk, disease classification and co-morbidity for many diseases associated with reproduction and infertility.
Resumo:
BACKGROUND Endometriosis is a heritable common gynaecological condition influenced by multiple genetic and environmental factors. Genome-wide association studies (GWASs) have proved successful in identifying common genetic variants of moderate effects for various complex diseases. To date, eight GWAS and replication studies from multiple populations have been published on endometriosis. In this review, we investigate the consistency and heterogeneity of the results across all the studies and their implications for an improved understanding of the aetiology of the condition. METHODS Meta-analyses were conducted on four GWASs and four replication studies including a total of 11 506 cases and 32 678 controls, and on the subset of studies that investigated associations for revised American Fertility Society (rAFS) Stage III/IV including 2859 cases. The datasets included 9039 cases and 27 343 controls of European (Australia, Belgium, Italy, UK, USA) and 2467 cases and 5335 controls of Japanese ancestry. Fixed and Han and Elkin random-effects models, and heterogeneity statistics (Cochran's Q test), were used to investigate the evidence of the nine reported genome-wide significant loci across datasets and populations. RESULTS Meta-analysis showed that seven out of nine loci had consistent directions of effect across studies and populations, and six out of nine remained genome-wide significant (P < 5 × 10(-8)), including rs12700667 on 7p15.2 (P = 1.6 × 10(-9)), rs7521902 near WNT4 (P = 1.8 × 10(-15)), rs10859871 near VEZT (P = 4.7 × 10(-15)), rs1537377 near CDKN2B-AS1 (P = 1.5 × 10(-8)), rs7739264 near ID4 (P = 6.2 × 10(-10)) and rs13394619 in GREB1 (P = 4.5 × 10(-8)). In addition to the six loci, two showed borderline genome-wide significant associations with Stage III/IV endometriosis, including rs1250248 in FN1 (P = 8 × 10(-8)) and rs4141819 on 2p14 (P = 9.2 × 10(-8)). Two independent inter-genic loci, rs4141819 and rs6734792 on chromosome 2, showed significant evidence of heterogeneity across datasets (P < 0.005). Eight of the nine loci had stronger effect sizes among Stage III/IV cases, implying that they are likely to be implicated in the development of moderate to severe, or ovarian, disease. While three out of nine loci were inter-genic, the remaining were in or near genes with known functions of biological relevance to endometriosis, varying from roles in developmental pathways to cellular growth/carcinogenesis. CONCLUSIONS Our meta-analysis shows remarkable consistency in endometriosis GWAS results across studies, with little evidence of population-based heterogeneity. They also show that the phenotypic classifications used in GWAS to date have been limited. Stronger associations with Stage III/IV disease observed for most loci emphasize the importance for future studies to include detailed sub-phenotype information. Functional studies in relevant tissues are needed to understand the effect of the variants on downstream biological pathways.
Resumo:
Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.
Resumo:
There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-1 gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-1A. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.
Resumo:
Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-Analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.
Resumo:
Objective. Ankylosing spondylitis (AS) is a debilitating chronic inflammatory condition with a high degree of familiality (λs=82) and heritability (>90%) that primarily affects spinal and sacroiliac joints. Whole genome scans for linkage to AS phenotypes have been conducted, although results have been inconsistent between studies and all have had modest sample sizes. One potential solution to these issues is to combine data from multiple studies in a retrospective meta-analysis. Methods: The International Genetics of Ankylosing Spondylitis Consortium combined data from three whole genome linkage scans for AS (n=3744 subjects) to determine chromosomal markers that show evidence of linkage with disease. Linkage markers typed in different centres were integrated into a consensus map to facilitate effective data pooling. We performed a weighted meta-analysis to combine the linkage results, and compared them with the three individual scans and a combined pooled scan. Results: In addition to the expected region surrounding the HLA-B27 gene on chromosome 6, we determined that several marker regions showed significant evidence of linkage with disease status. Regions on chromosome 10q and 16q achieved 'suggestive' evidence of linkage, and regions on chromosomes 1q, 3q, 5q, 6q, 9q, 17q and 19q showed at least nominal linkage in two or more scans and in the weighted meta-analysis. Regions previously associated with AS on chromosome 2q (the IL-1 gene cluster) and 22q (CYP2D6) exhibited nominal linkage in the meta-analysis, providing further statistical support for their involvement in susceptibility to AS. Conclusion: These findings provide a useful guide for future studies aiming to identify the genes involved in this highly heritable condition. . Published by on behalf of the British Society for Rheumatology.
Resumo:
BACKGROUND: The tendency to conceive dizygotic (DZ) twins is a complex trait influenced by genetic and environmental factors. To search for new candidate loci for twinning, we conducted a genome-wide linkage scan in 525 families using microsatellite and single nucleotide polymorphism marker panels. METHODS AND RESULTS: Non-parametric linkage analyses, including 523 families containing a total of 1115 mothers of DZ twins (MODZT) from Australia and New Zealand (ANZ) and The Netherlands (NL), produced four linkage peaks above the threshold for suggestive linkage, including a highly suggestive peak at the extreme telomeric end of chromosome 6 with an exponential logarithm of odds \[(exp)LOD] score of 2.813 (P = 0.0002). Since the DZ twinning rate increases steeply with maternal age independent of genetic effects, we also investigated linkage including only families where at least one MODZT gave birth to her first set of twins before the age of 30. These analyses produced a maximum expLOD score of 2.718 (P = 0.0002), largely due to linkage signal from the ANZ cohort, however, ordered subset analyses indicated this result is most likely a chance finding in the combined dataset. Linkage analyses were also performed for two large DZ twinning families from the USA, one of which produced a peak on chromosome 2 in the region of two potential candidate genes. Sequencing of FSHR and FIGLA, along with INHBB in MODZTs from two large NL families with family specific linkage peaks directly over this gene, revealed a potentially functional variant in the 5' untranslated region of FSHR that segregated with the DZ twinning phenotype in the Utah family. CONCLUSION: Our data provide further evidence for complex inheritance of familial DZ twinning.
Resumo:
Utilizing DNA samples from 91 Afrikaner nuclear families with one or more affected children, five genomic regions on chromosomes 2p, 8q, 11q, 20q, and 21q that gave evidence for association with GTS in previous case-control association studies were investigated for linkage and association with GTS. Highly polymorphic markers with mean heterozygosity of 0.77 were typed and resulting genotypes evaluated using single marker transmission disequilibrium (TDT), single marker haplotype relative risk (HRR), and multi-marker "extended" TDT and HRR methods. Single marker TDT analysis showed evidence for linkage or association, with p-values near 0.05, for markers D2S139, GATA28F12, and D11S1377 on chromosomes 2p11, 8q22 and 11q23-24, respectively. Extended, two-locus TDT and HRR analysis provided further evidence for linkage or association on chromosome 2 with p-values of 0.007 and 0.025, and chromosome 8 with p-values of 0.059 and 0.013, respectively. These results provide important additional evidence for the location of GTS susceptibility loci.
Resumo:
Abstract Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9.
Resumo:
BACKGROUND Endometriosis is a polygenic disease with a complex and multifactorial aetiology that affects 8-10% of women of reproductive age. Epidemiological data support a link between endometriosis and cancers of the reproductive tract. Fibroblast growth factor receptor 2 (FGFR2) has recently been implicated in both endometrial and breast cancer. Our previous studies on endometriosis identified significant linkage to a novel susceptibility locus on chromosome 10q26 and the FGFR2 gene maps within this linkage region. We therefore hypothesized that variation in FGFR2 may contribute to the risk of endometriosis. METHODS We genotyped 13 single nucleotide polymorphisms (SNPs) densely covering a 27 kb region within intron 2 of FGFR2 including two SNPs (rs2981582 and rs1219648) significantly associated with breast cancer and a total 40 tagSNPs across 150 kb of the FGFR2 gene. SNPs were genotyped in 958 endometriosis cases and 959 unrelated controls. RESULTS We found no evidence for association between endometriosis and FGFR2 intron 2 SNPs or SNP haplotypes and no evidence for association between endometriosis and variation across the FGFR2 gene. CONCLUSIONS Common variation in the breast-cancer implicated intron 2 and other highly plausible causative candidate regions of FGFR2 do not appear to be a major contributor to endometriosis susceptibility in our large Australian sample.
Resumo:
The majority of small-cell lung cancers (SCLCs) express p16 but not pRb. Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC and MCC, we wished to determine if this was also the case in MCC. Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and 1 on 9q. No loss of heterozygosity (LOH) was seen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p. Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined. Half of all informative cases had LOH at D9S168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168. A second region (IFNA-D9S126) showed LOH in 10 (44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all 11 tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p14(ARF) antibody. These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus.