81 resultados para choroidal lesion

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinicians regularly face the confronting challenge of differentiating a choroidal naevus from a melanoma. Uveal naevi are a relatively common finding during routine eye examinations: a prevalence of 6.5 per cent has been reported.1 In contrast, malignant melanomata are uncommon, being found in six persons per million population, but they can have devastating implications and consequences.2 Differential diagnoses can be difficult to make with certainty; any additional information that can assist in this process is advantageous...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare measurements of retinal thickness (RT) and choroidal thickness (ChT) obtained with an optical low coherence reflectometry (OLCR) biometer (Lenstar LS 900) with those obtained with a spectral domain optical coherence tomographer (SD OCT) (Copernicus SOCT HR) in young normal subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Catheter ablation for atrial fibrillation (AF) is more efficacious than antiarrhythmic therapy. Post ablation recurrences reduce ablation effectiveness and are contributed by lesion discontinuity in the fibrotic linear ablation lesions. The anti-fibrotic role of statins in reducing AF is being assessed in current trials. By reducing the chronic pathological fibrosis that occurs in AF they may reduce AF. However if statins also have an effect on the acute therapeutic fibrosis of an ablation, this could exacerbate lesion discontinuity and AF recurrence. We tested the hypothesis that statins attenuate ablation lesion continuity in a recognised pig atrial linear ablation model. Aims: To assess whether Atorvastatin diminishes the bi-directional conduction block produced by a linear atrial ablation lesion. Methods: Sixteen pigs were randomised to statin (n=8) or placebo (n=8) with drug pre-treatment for 3 days and a further 4 weeks. At initial electrophysiological study (EPS1) 3D right atrium (RA) mapping and a vertical ablation linear lesion in the posterior RA with bidirectional conduction block were completed (Gepstein Circ 1999). Follow-up electrophysiological assessment (EPS2) at 28 days assessed bidirectional conduction block maintenance. Results: Data of 15/16 (statin=7) pigs were analysed. Mean lesion length was 3.7 ± 0.8cm with a mean of 17.9 ± 5.7 lesion applications. Bi-directional conduction block was confirmed in 15/15 pigs (100%) at EPS1 and EPS2. Conclusions: Atorvastatin did not affect ablation lesion continuity in this pig atrial linear ablation model. If patients are on long-term statins for AF reduction, periablation cessation is probably not necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To examine the foveal retinal thickness (RT) and subfoveal choroidal thickness (ChT) between the fellow eyes of myopic anisometropes. METHODS: Twenty-two young (mean age 23 ± 5 years), healthy myopic anisometropes (≥ 1 D spherical equivalent [SEq] anisometropia) without amblyopia or strabismus were recruited. Spectral domain optical coherence tomography (SD-OCT) was used to capture images of the retina and choroid. Customised software was used to register, align and average multiple foveal OCT B-Scan images from each subject in order to enhance image quality. Two independent masked observers then manually determined the RT and ChT at the centre of the fovea from each SD-OCT image, which were then averaged. Axial length was measured using optical low coherence biometry during relaxed accommodation. RESULTS: The mean absolute SEq anisometropia was 1.74 ± 0.95 D and the mean interocular difference in axial length was 0.58 ± 0.41 mm. There was a strong correlation between SEq anisometropia and the interocular difference in axial length (r = 0.90, p < 0.001). Measures of RT and ChT were highly correlated between the two observers (r = 0.99 and 0.97 respectively) and in close agreement (mean inter-observer difference: RT 1.3 ± 2.2 µm, ChT 1.5 ± 13.7 µm). There was no significant difference in RT between the more (218 ± 18 µm) and less myopic eyes (215 ± 18 µm) (p > 0.05). However, the mean subfoveal ChT was significantly thinner in the more myopic eye (252 ± 46 µm) compared to the fellow, less myopic eye (286 ± 58 µm) (p < 0.001). There was a moderate correlation between the interocular difference in ChT and the interocular difference in axial length (r = -0.50, p < 0.01). CONCLUSIONS: Foveal RT was similar between the fellow eyes of myopic anisometropes; however, the subfoveal choroid was significantly thinner in the more myopic (longer) eye of our anisometropic cohort. The interocular difference in ChT correlated with the magnitude of axial anisometropia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time course of elongation and recovery of axial length associated with a 30 minute accommodative task was studied using optical low coherence reflectometry in a population of young adult myopic (n = 37) and emmetropic (n = 22) subjects. Ten of the 59 subjects were excluded from analysis either due to inconsistent accommodative response, or incomplete anterior biometry data. Those subjects with valid data (n = 49) were found to exhibit a significant axial elongation immediately following the commencement of a 30 minute, 4 D accommodation task, which was sustained for the duration of the task, and ¬was evident to a lesser extent immediately following task cessation. During the accommodation task, on average, the myopic subjects exhibited 22 ± 34 µm, and the emmetropic subjects 6 ± 22 µm of axial elongation, however the differences in axial elongation between the myopic and emmetropic subjects were not statistically significant (p = 0.136). Immediately following the completion of the task, the myopic subjects still exhibited an axial elongation (mean magnitude 12 ± 28 µm), that was significantly greater (p < 0.05) than the changes in axial length observed in the emmetropic subjects (mean change -3 ± 16 µm). Axial length had returned to baseline levels 10 minutes after completion of the accommodation task. The time for recovery from accommodation-induced axial elongation was greater in myopes, which may reflect differences in the biomechanical properties of the globe associated with refractive error. Changes in subfoveal choroidal thickness were able to be measured in 37 of the 59 subjects, and a small amount of choroidal thinning was observed during the accommodation task that was statistically significant in the myopic subjects (p < 0.05). These subfoveal choroidal changes could account for some but not all of the increased axial length during accommodation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research indicates that brief periods (60 minutes) of monocular defocus lead to small but significant changes in human axial length. However, the effects of longer periods of defocus on the axial length of human eyes are unknown. We examined the influence of a 12 hour period of monocular myopic defocus on the natural daily variations occurring in axial length and choroidal thickness of young adult emmetropes. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 13 emmetropic young adults over three consecutive days. The natural daily rhythms (Day 1, baseline day, no defocus), the daily rhythms with monocular myopic defocus (Day 2, defocus day, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, recovery day, no defocus) were all examined. Significant variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days (p<0.0001). The magnitude and timing of the daily variations in axial length and choroidal thickness were significantly altered with the monocular myopic defocus on day 2 (p<0.0001). Following the introduction of monocular myopic defocus, the daily peak in axial length occurred approximately 6 hours later, and the peak in choroidal thickness approximately 8.5 hours earlier in the day compared to days 1 and 3 (with no defocus). The mean amplitude (peak to trough) of change in axial length (0.030 ± 0.012 on day 1, 0.020 ± 0.010 on day 2 and 0.033 ± 0.012 mm on day 3) and choroidal thickness (0.030 ± 0.007 on day 1, 0.022 ± 0.006 on day 2 and 0.027 ± 0.009 mm on day 3) were also significantly different between the three days (both p<0.05). The introduction of monocular myopic defocus disrupts the daily variations in axial length and choroidal thickness of human eyes (in terms of both amplitude and timing) that return to normal the following day after removal of the defocus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To compare the retinal thickness (RT) and choroidal thickness (ChT) between the fellow eyes of non-amblyopic myopic anisometropes. Methods: The eyes of 22 non-amblyopic myopic anisometropes (1 D spherical equivalent refraction [SER] anisometropia) were examined using spectral domain optical coherence tomography (SD-OCT). Customised software was used to register, align and average multiple foveal OCT B-Scan images from each subject in order to enhance image quality. Two independent masked observers manually determined the RT and ChT from each SD-OCT image up to 2.5 mm nasal and temporal to the fovea. Axial length (AXL) was measured using optical low coherence biometry during relaxed accommodation. Results: The mean SER anisometropia was 1.74 ± 0.95 D and the mean interocular AXL difference was 0.58 ± 0.41 mm. There was no significant difference in foveal RT between the fellow eyes (P > 0.05). Mean subfoveal ChT was significantly thinner in the more myopic eye (252 ± 46 μm compared to the fellow, less myopic eye (286 ± 58 μm) (P < 0.001). There was a moderate correlation between the interocular difference in subfoveal ChT and the interocular difference in AXL (r = -0.50, P < 0.01). Asian anisometropes displayed more regionally symmetrical (nasal-temporal)interocular differences in ChT profile compared to Caucasians. Conclusions: RT was similar between the fellow eyes of myopic anisometropes; however, the subfoveal choroid was significantly thinner in the more myopic (longer) eye of this anisometropic cohort. The interocular asymmetry in ChT correlated with the interocular difference in AXL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: This paper describes the development of a risk adjustment (RA) model predictive of individual lesion treatment failure in percutaneous coronary interventions (PCI) for use in a quality monitoring and improvement program. Methods and results: Prospectively collected data for 3972 consecutive revascularisation procedures (5601 lesions) performed between January 2003 and September 2011 were studied. Data on procedures to September 2009 (n = 3100) were used to identify factors predictive of lesion treatment failure. Factors identified included lesion risk class (p < 0.001), occlusion type (p < 0.001), patient age (p = 0.001), vessel system (p < 0.04), vessel diameter (p < 0.001), unstable angina (p = 0.003) and presence of major cardiac risk factors (p = 0.01). A Bayesian RA model was built using these factors with predictive performance of the model tested on the remaining procedures (area under the receiver operating curve: 0.765, Hosmer–Lemeshow p value: 0.11). Cumulative sum, exponentially weighted moving average and funnel plots were constructed using the RA model and subjectively evaluated. Conclusion: A RA model was developed and applied to SPC monitoring for lesion failure in a PCI database. If linked to appropriate quality improvement governance response protocols, SPC using this RA tool might improve quality control and risk management by identifying variation in performance based on a comparison of observed and expected outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To examine choroidal thickness (ChT) and its spatial distribution across the posterior pole in pediatric subjects with normal ocular health and minimal refractive error. Methods ChT was assessed using spectral domain optical coherence tomography (OCT) in 194 children aged between 4-12 years, with spherical equivalent refractive errors between +1.25 and -0.50 DS. A series of OCT scans were collected, imaging the choroid along 4 radial scan lines centered on the fovea (each separated by 45°). Frame averaging was used to reduce noise and enhance chorio-scleral junction visibility. The transverse scale of each scan was corrected to account for magnification effects associated with axial length. Two independent masked observers manually segmented the OCT images to determine ChT at foveal centre, and averaged across a series of perifoveal zones over the central 5 mm. Results The average subfoveal ChT was 330 ± 65 µm (range 189-538 µm), and was significantly influenced by age (p=0.04). The ChT of the 4 to 6 year old age group (312 ± 62 µm) was significantly thinner compared to the 7 to 9 year olds (337 ± 65 µm, p<0.05) and bordered on significance compared to the 10 to 12 year olds (341 ± 61 µm, p=0.08). ChT also exhibited significant variation across the posterior pole, being thicker in more central regions. The choroid was thinner nasally and inferiorly compared to temporally and superiorly. Multiple regression analysis revealed age, axial length and anterior chamber depth were significantly associated with subfoveal ChT (p<0.001). Conclusions ChT increases significantly from early childhood to adolescence. This appears to be a normal feature of childhood eye growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile teledermatoscopy (MTD) for the early detection of skin cancer uses smartphones with dermatoscope attachments to magnify, capture, and transfer images remotely.1 Using the asymmetry–color variation (AC) rule, consumers achieve dermoscopy sensitivity of 92.9% to 94.0% and specificity of 62.0% to 64.2% for melanoma.2 This pilot randomized trial assessed lesions of concern selected by consumers at high risk of melanoma using MTD plus the AC rule (intervention, n = 10) or the AC rule alone (control, n = 12) during skin self-examination (SSE). Also measured were lesion location patterns, lesions overlooked by participants, provisional clinical diagnoses, likelihood of malignant tumor, and participant pressure to excise lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To examine choroidal thickness (ChT) and its topographical variation across the posterior pole in myopic and non-myopic children. Methods One hundred and four children aged 10-15 years of age (mean age 13.1 ± 1.4 years) had ChT measured using enhanced depth imaging optical coherence tomography (OCT). Forty one children were myopic (mean spherical equivalent -2.4 ± 1.5 D) and 63 non-myopic (mean +0.3 ± 0.3 D). Two series of 6 radial OCT line scans centred on the fovea were assessed for each child. Subfoveal ChT and ChT across a series of parafoveal zones over the central 6mm of the posterior pole were determined through manual image segmentation. Results Subfoveal ChT was significantly thinner in myopes (mean 303 ± 79 µm) compared to non-myopes (mean 359 ± 77 µm) (p<0.0001). Multiple regression analysis revealed both refractive error (r = 0.39, p<0.001) and age (r = 0.21, p = 0.02) were positively associated with subfoveal ChT. ChT also exhibited significant topographical variations, with the choroid being thicker in more central regions. The thinnest choroid was typically observed in nasal (mean 286 ± 77 µm) and inferior-nasal (306 ± 79 µm) locations, and the thickest in superior (346 ± 79 µm) and superior-temporal (341 ± 74 µm) locations. The difference in ChT between myopic and non-myopic children was significantly greater in central foveal regions compared to more peripheral regions (>3 mm diameter) (p<0.001). Conclusions Myopic children have significantly thinner choroids compared to non-myopic children of similar age, particularly in central foveal regions. The magnitude of difference in choroidal thickness associated with myopia appears greater than would be predicted by a simple passive choroidal thinning with axial elongation.