85 resultados para cfd

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bicycle ergometer is a scientific device used by exercise physiologists which attempts to mimic on-road cycling characteristics such as foot technique, EMG activity, VO2, VCO2 and rider cardiology in a laboratory environment. Presently there are no known useful scientific ergometers that mimic these characteristics and are able to provide a satisfactory controlled resistance that is independent of speed. Previous research has suggested the use of a Magneto-Rheological (MR) Fluid as part of the ergometer design, as when used in a rotary brake application it is able to be controlled electronically to increase resistance instantly and independent of speed. In the target application, MR fluids are subject to immense tribological wear and temperature during viscous shearing, and will eventually show some degree of deterioration which is usually manifested as an increase in off-state viscosity. It is not known exactly how the fluid fails, however the amount of deterioration is related to the shear rate, temperature and duration and directly related to the power dissipation. Currently, there is very little literature that investigates the flow and thermal characteristics of MR fluid tribology using CFD. In this paper, we present initial work that aims to improve understanding of MR fluid wear via CFD modelling using Fluent, and results from the model are compared with those obtained from a experimental test rig of an MR fluid-based bicycle ergometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll plazas are particularly susceptible to build-ups of vehicle-emitted pollutants because vehicles pass through in low gear. To look at this, three-dimensional computational fluid dynamics simulations of pollutant dispersion are used on the standard k e turbulence model. The effects of wind speed, wind direction and topography on pollutant dispersion were discussed. The Wuzhuang toll plaza on the Hefei-Nanjing expressway is considered, and the effects of the retaining walls along both sides of the plaza on pollutant dispersion is analysed. There are greater pollutant concentrations near the tollbooths as the angle between the direction of the wind and traffic increases implying that retaining walls impede dispersion. The slope of the walls has little influence on the variations in pollutant concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the performances of two different optimisation techniques for solving inverse problems; the first one deals with the Hierarchical Asynchronous Parallel Evolutionary Algorithms software (HAPEA) and the second is implemented with a game strategy named Nash-EA. The HAPEA software is based on a hierarchical topology and asynchronous parallel computation. The Nash-EA methodology is introduced as a distributed virtual game and consists of splitting the wing design variables - aerofoil sections - supervised by players optimising their own strategy. The HAPEA and Nash-EA software methodologies are applied to a single objective aerodynamic ONERA M6 wing reconstruction. Numerical results from the two approaches are compared in terms of the quality of model and computational expense and demonstrate the superiority of the distributed Nash-EA methodology in a parallel environment for a similar design quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1996, ther provision of a refuge floor has been a mandatory feature for all new tall buildings in Hong Kong. These floors are designed to provide for building occupants a fire safe environment that is also free from smoke. However, the desired cross ventilation on these floors to achieve the removal of smoke, assumed by the Building Codes of Hong Kong, is still being questioned so that a further scientific study of the wind-induced ventilation of a refuge fllor is needed. This paper presents an investigation into this issue. The developed computational technique used in this paper was adopted to study the wind-induced natural ventilation on a refuge floor. The aim of the investigation was to establish whether a refuge floor with a cetnral core and having cross ventilation produced by only two open opposite external side walls on the refuge floor would provide the required protection in all situations taking into account behaviour of wind due to different floor heights, wall boundary conditions and turbulence intensity profiles. The results revealed that natural ventilation can be increased by increasng the floor heigh provided the wind angle to the building is less than 90 degrees. The effectiveness of the solution was greatly reduced when the wind was blowing at 90 degrees to the refuge floor opening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computation Fluid Dynamics (CFD) has become an important tool in optimization and has seen successful in many real world applications. Most important among these is in the optimisation of aerodynamic surfaces which has become Multi-Objective (MO) and Multidisciplinary (MDO) in nature. Most of these have been carried out for a given set of input parameters such as free stream Mach number and angle of attack. One cannot ignore the fact that in aerospace engineering one frequently deals with situations where the design input parameters and flight/flow conditions have some amount of uncertainty attached to them. When the optimisation is carried out for fixed values of design variables and parameters however, one arrives at an optimised solution that results in good performance at design condition but poor drag or lift to drag ratio at slightly off-design conditions. The challenge is still to develop a robust design that accounts for uncertainty in the design in aerospace applications. In this paper this issue is taken up and an attempt is made to prevent the fluctuation of objective performance by using robust design technique or Uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new immobilized flat plate photocatalytic reactor for wastewater treatment has been proposed in this study to avoid subsequent catalyst removal from the treated water. The reactor consists of an inlet, reactive section where catalyst is coated and an outlet parts. In order to optimize the fluid mixing and reactor design, this study aims to investigate the influence of baffles and its arrangement on the flat plate reactor hydrodynamics using computational fluid dynamics (CFD) simulation. For simulation, an array of baffles acting as turbulence promoters is inserted in the reactive zone of the reactor. In this regard, results obtained from the simulation of a baffled- flat plate photoreactor hydrodynamics for different baffle positions, heights and intervals are presented utilizing RNG k-ε turbulence model. Under the conditions simulated, the qualitative flow features, such as the development and separation of boundary layers, vortex formation, the presence of high shear regions and recirculation zones, and the underlying mechanism are examined. The influence of various baffle sizes on the distribution of pollutant concentration is also highlighted. The results presented here indicate that the spanning of recirculation increases the degree of interfacial distortion with a larger interfacial area between fluids which results in substantial enhancement in fluid mixing. The simulation results suggest that the qualitative and quantitative properties of fluid dynamics in a baffled reactor can be obtained which provides valuable insight to fully understand the effect of baffles and its arrangements on the flow pattern, behaviour, and feature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational fluid dynamics (CFD) models for ultrahigh velocity waterjets and abrasive waterjets (AWJs) are established using the Fluent 6 flow solver. Jet dynamic characteristics for the flow downstream from a very fine nozzle are then simulated under steady state, turbulent, two-phase and three-phase flow conditions. Water and particle velocities in a jet are obtained under different input and boundary conditions to provide an insight into the jet characteristics and a fundamental understanding of the kerf formation process in AWJ cutting. For the range of downstream distances considered, the results indicate that a jet is characterised by an initial rapid decay of the axial velocity at the jet centre while the cross-sectional flow evolves towards a top-hat profile downstream.