143 resultados para carbon supported PtSn catalysts
em Queensland University of Technology - ePrints Archive
Resumo:
The CO2-methane reformation reaction over Ni/SiO2 catalysts has been extensively studied using a range of temperature-programmed techniques and characterisation of the catalysts by thermogravimetry (TG), X-ray diffraction (XRD) and electron microscopy (TEM). The results indicate a strong correlation between the microstructure of the catalyst and its performance. The role of both CO2 and CH4 in the reaction has been investigated and the role of methyl radicals in the reaction mechanism highlighted. A reaction mechanism involving dissociatively adsorbed CO2 and methyl radicals has been proposed.
Resumo:
FTIR spectra are reported of CO adsorbed on silica-supported copper catalysts prepared from copper(II) acetate monohydrate. Fully oxidised catalyst gave bands due to CO on CuO, isolated Cu2+ cations on silica and anion vacancy sites in CuO. The highly dispersed CuO aggregated on reduction to metal particles which gave bands due to adsorbed CO characteristic of both low-index exposed planes and stepped sites on high-index planes. Partial surface oxidation with N2O or H2O generated Cu+ adsorption sites which were slowly reduced to Cu° by CO at 300 K. Surface carbonate initially formed from CO was also slowly depleted with time with the generation of CO2. The results are consistent with adsorbed carbonate being an intermediate in the water-gas shift reaction of H2O and CO to H2 and CO2.
Resumo:
Three porous amorphous silica minerals, including diatomite, opal and porous precipitated SiO2wereadopted to prepare supported TiO2catalysts by hydrolysis–deposition method. The prepared compoundmaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fouriertransform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Through morphology and physical chemistry properties of the resultingTiO2/amorphous SiO2catalysts, it was proposed that the nature of silica supports could affect the particlesize and the crystal form of TiO2and then further influence the photocatalytic property of TiO2/amorphousSiO2catalysts. The catalytic properties of these porous amorphous silica supported photocatalysts(TiO2/SiO2) were investigated by UV-assisted degradation of Rhodamine B (RhB). Compared with pureTiO2(P25) and the other two TiO2/amorphous SiO2catalysts, TiO2/diatomite photocatalyst exhibits bet-ter catalytic performance at different calcined temperatures, the decoloration rate of which can be upto over 85% even at a relatively low calcined temperature. The TiO2/diatomite photocatalyst possessesmixed-phase TiO2with relatively smaller particles size, which might be responsible for higher photo-catalytic activity. Moreover, the stable and much inerter porous microstructure of diatomite could beanother key factor in improving its activity.
Resumo:
Infrared spectra are reported of methyl formate and formaldehyde adsorbed at 300 K on silica, Cu/SiO2 reduced in hydrogen and Cu/SiO2 which had been oxidised by exposure to nitrous oxide after reduction. Silanol groups on silica form hydrogen bonds with carbonyl groups in weakly adsorbed methyl formate molecules. Methyl formate ligates via its carbonyl groups to Cu atoms in the surface of reduced copper. A low residual concentration of surface oxygen on copper promoted the slow reaction of ligated methyl formate to give a bridging formate species on copper and adsorbed methoxy groups. Methyl formate did not ligate to an oxidised copper surface but was rapidly chemisorbed to give unidentate formate and methoxy species. Formaldehyde slowly polymerises on silica to form trioxane and other oxymethylene species. The reaction is faster over Cu/SiO2 which, in the reduced state, also catalyses the formation of bridging formate anions adsorbed on copper. The reaction between formaldehyde and oxidised Cu/SiO2 leads to both unidentate and bidentate formate and adsorbed water.
Resumo:
FTIR spectra are reported of CO, CO2, H2 and H2O on silica-supported potassium, copper and potassium-copper catalysts. Adsorption of CO on a potassium/silica catalyst resulted in the formation of complexed CO moieties. Whereas exposure of CO2 to the same catalyst produced bands ascribed to CO2 -, bidentate carbonate and complexed CO species. Fully oxidised copper/silica surfaces gave bands due to CO on CuO and isolated Cu2+ cations on silica. Addition of potassium to this catalyst removed a peak attributed to CO adsorption on isolated Cu2+ cations and red-shifted the maximum ascribed to CO adsorbed on CuO. For a reduced copper/silica catalyst bands due to adsorbed CO on both high and low index planes were red-shifted by 10 cm-1 in the presence of potassium, although the strength of the Cu - CO bond did not appear to be increased concomitantly. An explanation in terms of an electrostatic effect between potassium and adsorbed CO is forwarded. A small maximum at ca. 1510 cm-1 for the reduced catalyst increased substantially upon exposing CO to a reoxidised promoted catalyst. Correspondingly, CO2 adsorption allowed the identification of two distinct carboxylate species, one of which was located at an interfacial site between copper and potassium oxide. Carboxylate species reacted with hydrogen at 295 K, on a reduced copper surface, to produce predominantly unidentate formate on potassium. In contrast no interaction was detected on a reoxidised copper catalyst at 295 K until a fraction of the copper surface was in a reduced state. Furthermore the interaction of polar water molecules with carboxylate species resulted in a perturbation of this structure which gave lower C----O stretching frequencies.
Resumo:
Catalytic CO2 reforming of biomass tar on palygorskite-supported nickel catalysts using toluene as a model compound of biomass tar was investigated. The experiments were performed in a bench scale installation a fixed bed reactor. All experiments were carried out at 650, 750, 800 °C and atmospheric pressure. The effect of Ni loading, reaction temperature and concentration of CO2 on H2 yield and carbon deposit was investigated. Ni/Palygorskite (Ni/PG) catalysts with Ni/PG ratios of 0%, 2%, 5% and 8% were tested, the last two show the best performance. H2 yield and carbon deposit diminished with the increase of reaction temperature, Ni loading, and CO2 concentration.
Resumo:
Here we demonstrate that commercial carbon supported Pt nanoparticles react with [AuCl4]- ions at room temperature to produce a highly active Au/Pt/C material with an ultralow coverage of elemental Au on the Pt nanoparticles that exhibits significantly enhanced activity for ethanol oxidation when compared to Pt/C.
Resumo:
Carbon dioxide reforming of methane produces synthesis gas with a low hydrogen to carbon monoxide ratio, which is desirable for many industrial synthesis processes. This reaction also has very important environmental implications since both methane and carbon dioxide contribute to the greenhouse effect. Converting these gases into a valuable feedstock may significantly reduce the atmospheric emissions of CO2 and CH4. In this paper, we present a comprehensive review on the thermodynamics, catalyst selection and activity, reaction mechanism, and kinetics of this important reaction. Recently, research has centered on the development of catalysts and the feasible applications of this reaction in industry. Group VIII metals supported on oxides are found to be effective for this reason. However, carbon deposition causing catalyst deactivation is the major problem inhibiting the industrial application of the CO2/CH4 reaction. Ni-based catalysts impregnated on certain supports show carbon-free operation and thus attract much attention. To develop an effective catalyst for CO2 reforming of CH4 and accelerate the commercial application of the reaction, the following are identified to be the most important areas for future work: (1) selection of metal and support and studying the effect of their interaction on catalyst activity; (2) the effect of different promoter on catalyst activity; (3) the reaction mechanism and kinetics; and (4) pilot reactor performance and scale-up operation.
Resumo:
Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.
Resumo:
The catalytic performance of Fe–Ni/PG (PG: palygorskite) catalysts pre-calcined and reduced at 500 ◦C for catalytic decomposition of tar derived through rice hull gasification was investigated. The materials were characterized by using X-ray diffraction, hydrogen temperature reduction, and transmission electron microscopy. The results showed that ferrites with spinel structure ((Fe, Ni)3O4) were formed during preparation of bimetallic systems during calcination and reduction of the precursors (Fe–Ni/PG catalysts) and NiO metal oxide particles were formed over Fe6–Ni9/PG catalyst. The obtained experimental data showed that Fe–Ni/PG catalysts had greater catalytic activity than natural PG. Tar removal using Fe6–Ni9/PG catalyst was as high as Fe10–Ni6/PG catalyst (99.5%). Fe6–Ni9/PG showed greater catalytic activity with greater H2 yield and showed stronger resistance to carbon deposition, attributed to the presence of NiO nanoparticles. Thus, the addition of nickel and iron oxides played an important role in catalytic cracking of rice hull biomass tar.
Resumo:
In this study, the effect of catalyst preparation and additive precursors on the catalytic decomposition of biomass using palygorskite-supported Fe and Ni catalysts was investigated. The catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is concluded that the most active additive precursor was Fe(NO3)3·9H2O. As for the catalyst preparation method, co-precipitation had superiority over incipient wetness impregnation at low Fe loadings.