85 resultados para carbon film electrodes

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the efficient deposition of hydrogenated diamond-like carbon (DLC) film in a plasma reactor that features both the capacitively and inductively coupled operation regimes. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 2.66-Pa H-mode CH4 + Ar gas mixture discharge, the deposited DLC film exhibits a mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We fabricated high performance supercapacitors by using all carbon electrodes, with volume energy in the order of 10−3 Whcm−3, comparable to Li-ion batteries, and power densities in the range of 10 Wcm−3, better than laser-scribed-graphene supercapacitors. All-carbon supercapacitor electrodes are made by solution processing and filtering electrochemically-exfoliated graphene sheets mixed with clusters of spontaneously entangled multiwall carbon nanotubes. We maximize the capacitance by using a 1:1 weight ratio of graphene to multi-wall carbon nanotubes and by controlling their packing in the electrode film so as to maximize accessible surface and further enhance the charge collection. This electrode is transferred onto a plastic-paper-supported double-wall carbon nanotube film used as current collector. These all-carbon thin films are combined with plastic paper and gelled electrolyte to produce solid-state bendable thin film supercapacitors. We assembled supercapacitor cells in series in a planar configuration to increase the operating voltage and find that the shape of our supercapacitor film strongly affects its capacitance. An in-line superposition of rectangular sheets is superior to a cross superposition in maintaining high capacitance when subject to fast charge/discharge cycles. The effect is explained by addressing the mechanism of ion diffusion into stacked graphene sheets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An oriented graphitic nanostructured carbon film has been employed as a conductometric hydrogen gas sensor. The carbon film was energetically deposited using a filtered cathodic vacuum arc with a -75 V bias applied to a stainless steel grid placed 1cm from the surface of the Si substrate. The substrate was heated to 400°C prior to deposition. Electron microscopy showed evidence that the film consisted largely of vertically oriented graphitic sheets and had a density of 2.06 g/cm3. 76% of the atoms were bonded in sp2 or graphitic configurations. A change in the device resistance of >; 1.5% was exhibited upon exposure to 1 % hydrogen gas (in synthetic, zero humidity air) at 100°C. The time for the sensor resistance to increase by 1.5 % under these conditions was approximately 60 s and the baseline (zero hydrogen exposure) resistance remained constant to within 0.01% during and after the hydrogen exposures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrochemical processes in mesoporous TiO2-Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR-drop, RC-time constant phenomena, and by potential and pH-dependent conductivity. In this study, large-amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic-based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2-Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one-electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference-free pH sensing with systems like that found for ferrocene derivatives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the electropolymerization of poly(3,4-ethylenedioxythiopene) (PEDOT) from an ionic liquid, butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (C4mpyrTFSI) onto flexible carbon cloth electrodes. A continuous, homogeneous and well adhered coating of the individual cloth fibres is achieved by employing a sandwich cell arrangement where the carbon cloth which is soaked with electrolyte is placed between two indium tin oxide electrodes isolated from each other by a battery separator. The resultant PEDOT modified carbon cloth electrode demonstrates excellent activity for the oxygen reduction reaction which is due to the doping level, conductivity and morphology of the PEDOT layer and is also tolerant to the presence of methanol in the electrolyte. This simple approach therefore offers a route to fabricate flexible polymer electrodes that could be used in various electronic applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As solar hydrogen is a sustainable and environmental friendly energy carrier, it is considered to take the place of fossil fuels in the near future. Solar hydrogen can be generated by splitting of water under solar light illumination. In this study, the use of nanostructured hematite thin-film electrodes in photocatalytic water splitting was investigated. Hematite (á-Fe2O3) has a narrow band-gap of 2.2 eV, which is able to utilise approximately 40% of solar radiation. However, poor photoelectrochemical performance is observed for hematite due to low electrical conductivity and a high rate of electron-hole recombination. An extensive review of useful measures taken to overcoming the disadvantages of hematite so as to enhance its performance was presented including thin-film structure, nanostructuring, doping, etc. Since semiconductoring materials which exhibit an inverse opal structure are expected to have a high surface-volume ratio, unique optical characteristics and a shorter distance for photogenerated holes to travel to the electrode/electrolyte interface, inverse opals of hematite thin films deposited on FTO glass substrate were successfully prepared by doctor blading using PMMA as a template. However, due to the poor adhesion of the films, an acidic medium (i.e., 2 M HCl) was employed to significantly enhance the adhesion of the films, which completely destroyed the inverse opal structure. Therefore, undoped, Ti and Zn-doped hematite thin films deposied on FTO glass substrate without an inverse opal structure were prepared by doctor blading and spray pyrolysis and characterised using SEM, EDX, XRD, TGA, UV-Vis spectroscopy and photoelectrochemical measurements. Regarding the doped hematite thin films prepared by doctor blading, the photoelectrochemical activity of the hematite photoelectrodes was improved by incorporation of Ti, most likely owing to the increased electrical conductivity of the films, the stabilisation of oxygen vacancies by Ti4+ ions and the increased electric field of the space charge layer. A highest photoresponse was recorded in case of 2.5 at.% Ti which seemed to be an optimal concentration. The effect of doping content, thickness, and calcination temperature on the performance of the Ti-doped photoelectrodes was investigated. Also, the photoactivity of the 2.5 at.% Ti-doped samples was examined in two different types of electrochemical cells. Zn doping did not enhance the photoactivity of the hematite thin films though Zn seemed to enhance the hole transport due to the slow hole mobility of hematite which could not be overcome by the enhancement. The poor performance was also obtained for the Ti-doped samples prepared by spray pyrolysis, which appeared to be a result of introduction of impurities from the metallic parts of the spray gun in an acidic medium. Further characterisation of the thin-film electrodes is required to explain the mechanism by which enhanced performance was obtained for Ti-doped electrodes (doctor blading) and poor photoactivity for Zn and Ti-doped samples which were synthesised by doctor blading and spray pyrolysis, respectively. Ti-doped hematite thin films will be synthesised in another way, such as dip coating so as to maintain an inverse opal structure as well as well adhesion. Also, a comparative study of the films will be carried out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The practical number of charge carriers loaded is crucial to the evaluation of the capacity performance of carbon-based electrodes in service, and cannot be easily addressed experimentally. In this paper, we report a density functional theory study of charge carrier adsorption onto zigzag edge-shaped graphene nanoribbons (ZGNRs), both pristine and incorporating edge substitution with boron, nitrogen or oxygen atoms. All edge substitutions are found to be energetically favorable, especially in oxidized environments. The maximal loading of protons onto the substituted ZGNR edges obeys a rule of [8-n-1], where n is the number of valence electrons of the edge-site atom constituting the adsorption site. Hence, a maximum charge loading is achieved with boron substitution. This result correlates in a transparent manner with the electronic structure characteristics of the edge atom. The boron edge atom, characterized by the most empty p band, facilitates more than the other substitutional cases the accommodation of valence electrons transferred from the ribbon, induced by adsorption of protons. This result not only further confirms the possibility of enhancing charge storage performance of carbon-based electrochemical devices through chemical functionalization but also, more importantly, provides the physical rationale for further design strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heteroatom doping on the edge of graphene may serve as an effective way to tune chemical activity of carbon-based electrodes with respect to charge carrier transfer in an aqueous environment. In a step towards developing mechanistic understanding of this phenomenon, we explore herein mechanisms of proton transfer from aqueous solution to pristine and doped graphene edges utilizing density functional theory. Atomic B-, N-, and O- doped edges as well as the native graphene are examined, displaying varying proton affinities and effective interaction ranges with the H3O+ charge carrier. Our study shows that the doped edges characterized by more dispersive orbitals, namely boron and nitrogen, demonstrate more energetically favourable charge carrier exchange compared with oxygen, which features more localized orbitals. Extended calculations are carried out to examine proton transfer from the hydronium ion in the presence of explicit water, with results indicating that the basic mechanistic features of the simpler model are unchanged.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyaniline (PANI) thin films modified with platinum nanoparticles have been prepared by several methods, characterised and assessed in terms of electrocatalytic properties. These composite materials have been prepared by the in situ reduction of a platinum salt (K2PtCl4) by PANI, in a variety of solvents, resulting in the formation of platinum nanoparticles and clusters of different sizes. The further deposition of platinum clusters at spin cast thin films of PANI/Pt composites from a neutral aqueous solution of K2PtCl4 has also been demonstrated. Thin-film electrodes prepared from these materials have been investigated for their electrocatalytic activity by studying hydrazine oxidation and dichromate reduction. The properties of the composite materials have been determined using UV–visible spectroscopy, atomic force microscopy and transmission electron microscopy. The nature of the material formed is strongly dependent on the solvent used to dissolve PANI, the method of preparation of the PANI/Pt solution and the composition of the spin cast thin film before subsequent deposition of platinum from the aqueous solution of K2PtCl4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrodeposition of copper onto copper, gold, palladium and glassy carbon (GC) electrodes via a hydrogen bubble templating method is reported. It is found that the composition of the underlying electrode material significantly influences the morphology of the copper electrodeposit. Highly ordered porous structures are achieved with Cu and Au electrodes, however on Pd this order is disrupted and a rough randomly oriented surface is formed whereas on GC a bubble templating effect is not observed. Chronopotentiograms recorded during the electrodeposition process allows bubble formation and detachment from the surface to be monitored where distinctly different potential versus time profiles are observed at the different electrodes. The porous Cu surfaces are characterised with scanning electron microscopy, X-ray diffraction and cyclic voltammetric measurements recorded under alkaline conditions. The latter demonstrates that there are active sites present on electrodeposited copper whose coverage and reactivity depend on the underlying electrode material. The most active Cu surface is achieved at a Pd substrate for both the hydrogen evolution reaction and the catalytic reduction of ferricyanide ions with thiosulphate ions. This demonstrates that the highly ordered porous structure on the micron scale which typifies the morphology that can be achieved with the hydrogen bubbling template method is not required in producing the most effective material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel platform consisting of a multilayered substrate, activated graphite-like carbon film, and dense forest of long, vertically-aligned multiwall carbon nanotubes grown by the chemical vapor deposition is designed, fabricated, and tested for covalent immobilization of enzymatic biocatalysts with the aim of protecting them from shear forces and microbial attacks present in bioreactors. The covalent bonding ensures enzyme retention in a flow, while the dense nanotube forest may serve as a protection of the enzymes from microbial attack without impeding the flow of reactants and products. This platform was demonstrated for the two reference enzymes, horseradish peroxidase and catalase, which were immobilized without degrading their biological activity. This combination of an activated carbon layer for an efficient immobilization of biocatalysts with a protective layer of inert carbon nanotubes could dramatically improve the efficiency and longevity of enzymatic bio-catalysis employed in a large variety of advanced biotechnological processes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The search for new multipoint, multidirectional strain sensing devices has received a new impetus since the discovery of carbon nanotubes. The excellent electrical, mechanical, and electromechanical properties of carbon nanotubes make them ideal candidates as primary materials in the design of this new generation of sensing devices. Carbon nanotube based strain sensors proposed so far include those based on individual carbon nanotubes for integration in nano or micro elecromechanical systems (NEMS/MEMS) [1], or carbon nanotube films consisting of spatially connected carbon nanotubes [2], carbon nanotube - polymer composites [3,4] for macroscale strain sensing. Carbon nanotube films have good strain sensing response and offer the possibility of multidirectional and multipoint strain sensing, but have poor performance due to weak interaction between carbon nanotubes. In addition, the carbon nanotube film sensor is extremely fragile and difficult to handle and install. We report here the static and dynamic strain sensing characteristics as well as temperature effects of a sandwich carbon nanotube - polymer sensor fabricated by infiltrating carbon nanotube films with polymer.