245 resultados para carbon emissions
em Queensland University of Technology - ePrints Archive
Resumo:
A significant reduction in carbon emissions is a global mission and the construction industry has an indispensable role to play as a major carbon dioxide (CO2) generator. Over the years, various building environmental assessment (BEA) models and concepts have been developed to promote environmentally responsible design and construction. However, limited attention has been placed on assessing and benchmarking the carbon emitted throughout the lifecycle of building facilities. This situation could undermine the construction industry’s potential to reduce its dependence on raw materials, recognise the negative impacts of producing new materials, and intensify the recycle and reuse process. In this paper, current BEA approaches adopted by the construction industry are first introduced. The focus of these models and concepts is then examined. Following a brief review of lifecycle analysis, the boundary in which a lifecycle carbon emission analysis should be set for a construction project is identified. The paper concludes by highlighting the potential barriers of applying lifecycle carbon emissions analysis in the construction industry. It is proposed that lifecycle carbon emission analysis can be integrated with existing BEA models to provide a more comprehensive and accurate evaluation on the cradle-to-grave environmental performance of a construction facility. In doing so, this can assist owners and clients to identify the optimum solution to maximise emissions reduction opportunities.
Resumo:
This paper investigates the policies and instruments adopted in Hong Kong to control the carbon emissions of construction facilities, including the whole building life cycle: production of material stage, construction stage, operation stage and demolition stage. This commences with a literature review comparing activities world-wide to those in Hong Kong to identify the main issues at stake, followed by a report on a series of local interviews to evaluate the present situation in Hong Kong, as well as future opportunities for local carbon mitigation. The interviewees included practitioners from engineering contracting firms, consulting firms, clients and energy provider, together with two university experts and a counsellor. A small case study is also provided of a building project in Hong Kong to illustrate some of the innovative design aspects being incorporated into buildings in Hong Kong as a result of the current emphasis on sustainability. The paper concludes with a summary of main findings and proposals for improvement in policy related to carbon mitigation and building sustainability in Hong Kong.
Resumo:
It is widely recognised that exposure to air pollutants affect pulmonary and lung dysfunction as well as a range of neurological and vascular disorders. The rapid increase of worldwide carbon emissions continues to compromise environmental sustainability whilst contributing to premature death. Moreover, the harms caused by air pollution have a more pernicious reach, such as being the major source of climate change and ‘natural disasters’, which reportedly kills millions of people each year (World Health Organization, 2012). The opening quotations tell a story of the UK government's complacency towards the devastation of toxic and contaminating air emissions. The above headlines greeted the British public earlier this year after its government was taken to the Court of Appeal for an appalling air pollution record that continues to cause the premature deaths of 30,000 British people each year at a health cost estimated at £20 billion per annum. This combined with pending legal proceedings against the UK government for air pollution violations by the European Commission, point to a Cameron government that prioritises hot air and profit margins over human lives. The UK's legal air pollution regimes are an industry dominated process that relies on negotiation and partnership between regulators and polluters. The entire model seeks to assist business compliance rather than punish corporate offenders. There is no language of ‘crime’ in relation to UK air pollution violations but rather a discourse of ‘exceedence’ (Walters, 2010). It is a regulatory system not premised on the ‘polluter pay’ principle but instead the ‘polluter profit’ principle.
Resumo:
An emerging theme for a nation transiting into a sustainable future is the provision of a low carbon (dioxide) environment. Carbon emission reduction is therefore important for the industry and community as a whole. Buildings contribute immensely to total greenhouse gas emissions, so pragmatic actions need to be taken to cut the amount of carbon emitted by the construction industry. These typically involve strategies such as energy-saving features in the design, construction and operation of building projects. However, a variety of characteristics of the markets and stakeholders involved are suppressing their development. This paper reports on a series of interviews with a variety of Hong Kong construction project participants aimed at identifying the drivers of, and obstacles to, the construction industry's attempts to reduce carbon emissions. The results confirm the main actions currently undertaken are energy efficiency enhancement, green procurement, research and development activities, waste/water management and other technical measures such as the provision of thermal insulation. The majority of the drivers are economical in nature, suggesting that financial aids, and particularly government incentives, are likely to be useful motivators. Also suggested is the increased promotion of the benefits of environmental sustainability to the wider community, in order to alert the general public to the need for reducing the amount of carbon originating from building usage.
Resumo:
Carbon credit markets are in the early stages of development and media headlines such as these illustrate emerging levels of concern and foreboding over the potential for fraudulent crime within these markets. Australian companies are continuing to venture into the largely unregulated voluntary carbon credit market to offset their emissions and / or give their customers the opportunity to be ‘carbon neutral’. Accordingly, the voluntary market has seen a proliferation of carbon brokers that offer tailored offset carbon products according to need and taste. With the instigation of the Australian compliance market and with pressure increasing for political responses to combat climate change, we would expect Australian companies to experience greater exposure to carbon products in both compliance and voluntary markets. This paper examines the risks of carbon fraud in these markets by reviewing cases of actual fraud and analysing and identifying contexts where risks of carbon fraud are most likely.
Resumo:
Diesel particulate matter (DPM), in particular, has been likened in a somewhat inflammatory manner to be the ‘next asbestos’. From the business change perspective, there are three areas holding the industry back from fully engaging with the issue: 1. There is no real feedback loop in any operational sense to assess the impact of investment or application of controls to manage diesel emissions. 2. DPM are getting ever smaller and more numerous, but there is no practical way of measuring them to regulate them in the field. Mass, the current basis of regulation, is becoming less and less relevant. 3. Diesel emissions management is generally wholly viewed as a cost, yet there are significant areas of benefit available from good management. This paper discusses a feedback approach to address these three areas to move the industry forward. The six main areas of benefit from providing a feedback loop by continuously monitoring diesel emissions have been identified: 1. Condition-based maintenance. Emissions change instantaneously if engine condition changes. 2. Operator performance. An operator can use a lot more fuel for little incremental work output through poor technique or discipline. 3. Vehicle utilisation. Operating hours achieved and ratios of idling to under power affect the proportion of emissions produced with no economic value. 4. Fuel efficiency. This allows visibility into other contributing configuration and environmental factors for the vehicle. 5. Emission rates. This allows scope to directly address the required ratio of ventilation to diesel emissions. 6. Total carbon emissions - for NGER-type reporting requirements, calculating the emissions individually from each vehicle rather than just reporting on fuel delivered to a site.
Resumo:
Recent discussions of energy security and climate change have attracted significant attention to clean energy. We hypothesize that rising prices of conventional energy and/or placement of a price on carbon emissions would encourage investments in clean energy firms. The data from three clean energy indices show that oil prices and technology stock prices separately affect the stock prices of clean energy firms. However, the data fail to demonstrate a significant relationship between carbon prices and the stock prices of the firms.
Resumo:
The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.
Resumo:
As one of the largest sources of greenhouse gas (GHG) emissions, the building and construction sector is facing increasing pressure to reduce its life cycle GHG emissions. One central issue in striving towards reduced carbon emissions in the building and construction sector is to develop a practical and meaningful yardstick to assess and communicate GHG results through carbon labelling. The idea of carbon labelling schemes for building materials is to trigger a transition to a low carbon future by switching consumer-purchasing habits to low-carbon alternatives. As such, failing to change purchasing pattern and behaviour can be disastrous to carbon labelling schemes. One useful tool to assist customers to change their purchasing behaviour is benchmarking, which has been very commonly used in ecolabelling schemes. This paper analyses the definition and scope of benchmarking in the carbon labelling schemes for building materials. The benchmarking process has been examined within the context of carbon labelling. Four practical issues for the successful implementation of benchmarking, including the availability of benchmarks and databases, the usefulness of different types of benchmarks and the selection of labelling practices have also been clarified.
Resumo:
Greenhouse gas (GHG) emissions are simultaneously exhausting the world's supply of fossil fuels and threatening the global climate. In many developing countries, significant improvement in living standards in recent years due to the accelerating development of their economies has resulted in a disproportionate increase in household energy consumption. Therefore, a major reduction in household carbon emissions (HCEs) is essential if global carbon reduction targets are to be met. To do this, major Organisation for Economic Co-operation and Development (OECD) states have already implemented policies to alleviate the negative environmental effects of household behaviors and less carbon-intensive technologies are also proposed to promote energy efficiency and reduce carbon emissions. However, before any further remedial actions can be contemplated, though, it is important to fully understand the actual causes of such large HCEs and help researchers both gain deep insights into the development of the research domain and identify valuable research topics for future study. This paper reviews existing literature focusing on the domain of HCEs. This critical review provides a systematic understanding of current work in the field, describing the factors influencing HCEs under the themes of household income, household size, age, education level, location, gender and rebound effects. The main quantification methodologies of input–output models, life cycle assessment and emission coefficient methods are also presented, and the proposed measures to mitigate HCEs at the policy, technology and consumer levels. Finally, the limitations of work done to date and further research directions are identified for the benefit of future studies.
Resumo:
This study investigates the relationship between per capita carbon dioxide (CO2) emissions and per capita GDP in Australia, while controlling for technological state as measured by multifactor productivity and export of black coal. Although technological progress seems to play a critical role in achieving long term goals of CO2 reduction and economic growth, empirical studies have often considered time trend to proxy technological change. However, as discoveries and diffusion of new technologies may not progress smoothly with time, the assumption of a deterministic technological progress may be incorrect in the long run. The use of multifactor productivity as a measure of technological state, therefore, overcomes the limitations and provides practical policy directions. This study uses recently developed bound-testing approach, which is complemented by Johansen- Juselius maximum likelihood approach and a reasonably large sample size to investigate the cointegration relationship. Both of the techniques suggest that cointegration relationship exists among the variables. The long-run and short-run coefficients of CO2 emissions function is estimated using ARDL approach. The empirical findings in the study show evidence of the existence of Environmental Kuznets Curve type relationship for per capita CO2 emissions in the Australian context. The technology as measured by the multifactor productivity, however, is not found as an influencing variable in emissionsincome trajectory.
Resumo:
The study investigates the long-run and dynamic relationships between energy consumption and output in Australia using a multivariate cointegration and causality framework. Using both Engle-Granger and Johansen cointegration approaches, the study finds that energy consumption and real Gross Domestic Product are cointegrated. The Granger causality tests suggest bidirectional Granger causality between energy consumption and real GDP, and Granger endogeineity in the system. Since the energy sector largely contributes to carbon emissions in Australia, we suggest that direct measures to reduce carbon by putting constraints on the energy consumption would pose significant economic costs for the Australian economy.
Resumo:
This chapter explores the motivation behind potential carbon emission accounting fraud by corporations. There are several different possible risks of carbon emission accounting fraud which remain mostly overlooked by researchers to date, despite the fact that such frauds have a negative impact on a country’s economy as well as the real purpose of mitigating carbon emissions. The chapter offers discussion of some potential risks of carbon emission accounting fraud as well as related prevention policy. The study suggests that an effective mandatory carbon emission related fraud prevention policy is essential to eliminate opportunities to commit such fraud by corporations.