12 resultados para bounce
em Queensland University of Technology - ePrints Archive
Resumo:
Pesticides used in agricultural systems must be applied in economically viable and environmentally sensitive ways, and this often requires expensive field trials on spray deposition and retention by plant foliage. Computational models to describe whether a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding parent or shatter daughter droplets are recaptured, would provide an estimate of spray retention and thereby act as a useful guide prior to any field trials. Parameter-driven interactive software has been implemented to enable the end-user to study and visualise droplet interception and impaction on a single, horizontal leaf. Living chenopodium, wheat and cotton leaves have been scanned to capture the surface topography and realistic virtual leaf surface models have been generated. Individual leaf models have then been subjected to virtual spray droplets and predictions made of droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of the droplets and the subsequent behaviour of any daughter droplets, up until re-capture, are simulated to give the predicted total spray retention by the leaf. A series of critical thresholds for the stick, bounce, and shatter elements in the impaction process have been developed for different combinations of formulation, droplet size and velocity, and leaf surface characteristics to provide this output. The results show that droplet properties, spray formulations and leaf surface characteristics all influence the predicted amount of spray retained on a horizontal leaf surface. Overall the predicted spray retention increases as formulation surface tension, static contact angle, droplet size and velocity decreases. Predicted retention on cotton is much higher than on chenopodium. The average predicted retention on a single horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18, 30 and 85% for chenopodium, wheat and cotton, respectively.
Resumo:
This paper combines experimental data with simple mathematical models to investigate the influence of spray formulation type and leaf character (wettability) on shatter, bounce and adhesion of droplets impacting with cotton, rice and wheat leaves. Impaction criteria that allow for different angles of the leaf surface and the droplet impact trajectory are presented; their predictions are based on whether combinations of droplet size and velocity lie above or below bounce and shatter boundaries. In the experimental component, real leaves are used, with all their inherent natural variability. Further, commercial agricultural spray nozzles are employed, resulting in a range of droplet characteristics. Given this natural variability, there is broad agreement between the data and predictions. As predicted, the shatter of droplets was found to increase as droplet size and velocity increased, and the surface became harder to wet. Bouncing of droplets occurred most frequently on hard to wet surfaces with high surface tension mixtures. On the other hand, a number of small droplets with low impact velocity were observed to bounce when predicted to lie well within the adhering regime. We believe this discrepancy between the predictions and experimental data could be due to air layer effects that were not taken into account in the current bounce equations. Other discrepancies between experiment and theory are thought to be due to the current assumption of a dry impact surface, whereas, in practice, the leaf surfaces became increasingly covered with fluid throughout the spray test runs.
Resumo:
This paper presents the results of testing to determine pavement forces from three heavy vehicles (HVs). The HVs were instrumented to measure their wheel forces. A “novel roughness” value of the roads during testing is also derived. The various dynamic pavement forces are presented according to the range of novel roughness of pavement surfacings encountered during testing. The paper then examines the relationship between the two derived wavelengths predominant within the HV suspensions; those of axle hop and body-bounce. How these may be considered as contributing to spatial repetition of pavement forces from HVs is discussed. The paper concludes that pavement models need to be revised since dynamic forces from HVs in particular are not generally considered in current pavement design.
Resumo:
This article offers a critical exploration of the concept of resilience, which is largely conceptualized in the literature as an extraordinary atypical personal ability to revert or ‘bounce back’ to a point of equilibrium despite significant adversity. While resilience has been explored in a range of contexts, there is little recognition of resilience as a social process arising from mundane practices of everyday life and situated in person -environment interactions. Based on an ethnographic study among single refugee women with children in Brisbane, Australia, the women’s stories on navigating everyday tensions and opportunities revealed how resilience was a process operating inter-subjectively in the social spaces connecting them to their environment. Far beyond the simplistic binaries of resilience versus non-resilient, we concern ourselves here with the everyday processual, person environment nature of the concept. We argue that more attention should be paid to day-to-day pathways through which resilience outcomes are achieved, and that this has important implications for refugee mental health practice frameworks.
Resumo:
The promotion of resilience (the capacity of an individual or community to bounce back and recover from adversity) has become an important area of public health. In recent years it has expanded into the digital domain, and many online applications have been developed to promote children's resilience. In this study, it is argued that the majority of existing applications are limited because they take a didactic approach, and conceive of interaction as providing navigational choices. Because they simply provide information about resilience or replicate offline, scenario-based strategies, the understanding of resilience they provide is confined to a few, predetermined factors. In this study I propose a new, experiential approach to promoting resilience digitally. I define resilience as an emergent, situated and context-specific phenomenon. Using a Participatory Design model in combination with a salutogenic (strength-based) health methodology, this project has involved approximately 50 children as co-designers and co-researchers over two years. The children have contributed to the design of a new set of interactive resilience tools, which facilitate resilience promotion through dialogic and experiential learning. The major outcomes of this study include a new methodology for developing digital resilience tools, a new set of tools that have been developed and evaluated in collaboration with children and a set of design principles to guide future development. Beyond these initial and tangible outcomes, this study has also established that the benefits of introducing Participatory Design into a health promoting model rests primarily in the change of the role of children from "users" of technology and education to co-designers, where they assume a leadership role in both designing the tools and in directing their resilience learning.
Resumo:
Objectives: Adaptive patterning of human movement is context specific and dependent on interacting constraints of the performer–environment relationship. Flexibility of skilled behaviour is predicated on the capacity of performers to move between different states of movement organisation to satisfy dynamic task constraints, previously demonstrated in studies of visual perception, bimanual coordination, and an interceptive combat task. Metastability is a movement system property that helps performers to remain in a state of relative coordination with their performance environments, poised between multiple co-existing states (stable and distinct movement patterns or responses). The aim of this study was to examine whether metastability could be exploited in externally paced interceptive actions in fast ball sports, such as cricket. Design: Here we report data on metastability in performance of multi-articular hitting actions by skilled junior cricket batters (n = 5). Methods: Participants’ batting actions (key movement timings and performance outcomes) were analysed in four distinct performance regions varied by ball pitching (bounce) location. Results: Results demonstrated that, at a pre-determined distance to the ball, participants were forced into a meta-stable region of performance where rich and varied patterns of functional movement behaviours emerged. Participants adapted the organisation of responses, resulting in higher levels of variability in movement timing in this performance region, without detrimental effects on the quality of interceptive performance outcomes. Conclusions: Findings provide evidence for the emergence of metastability in a dynamic interceptive action in cricket batting. Flexibility and diversity of movement responses were optimised using experiential knowledge and careful manipulation of key task constraints of the specific sport context.
Resumo:
A novel method of matching stiffness and continuous variable damping of an ECAS (electronically controlled air suspension) based on LQG (linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus. Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics, a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests. By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency, the control algorithm of the target suspension height (i.e., stiffness) was derived according to driving speed and road roughness. Taking account of the nonlinearities of a continuous variable semi-active damper, the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force, which was calculated based on LQG control. Finally, a GA (genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method. Simulation results indicate that compared with the GA-based matching method, both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method, with peak values of the dynamic tire force PSD (power spectral density) decreased by 73.6%, 60.8% and 71.9% in the three cases, and corresponding reduction are 71.3%, 59.4% and 68.2% for the vehicle body vertical acceleration. A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.
Resumo:
Newman and Nelson (2012) describe three ‘dances’ to explain the vacillating psychological states of trauma survivors: the dance of approach and avoidance; the dance of fragmentation and integration; and the dance of resilience and vulnerability. The first pair of seemingly opposite responses describes how survivors at times cope by ‘approaching’ the trauma, for example by gathering information about what happened; whilst at other times, the same person will cope by ‘avoiding’ the trauma by engaging in activities which distract them from the memory of the trauma or having to deal with the consequences of it. The ‘dance’ of fragmentation and integration describes the opposing individual or group experiences encountered after traumas or disasters. Individuals may experience fragmentation, or emotional disconnection, from the trauma as an adaptive means of survival. The ‘dance’ of resilience and vulnerability refers to an individual’s ability to ‘process’ trauma and return to a resilient state in which they re-learn to trust people and the world around them and ‘bounce back’ to a state of being resilient again. This paper will illustrate how an understanding of the three dances can be used to enable survivors of child sexual assault to engage with the media to tell their stories. I will give current examples from six months of journalism research, collaboration and writing of a series of news stories and features which broke an exclusive story simultaneously in The Australian and The Times in London during 2013.
Resumo:
Hailstones in wet growth are commonly found in thunderclouds. While the ice-ice relative growth rate mechanism is generally accepted as the most likely cause of thunderstorm electrification, it is uncertain if this mechanism will operate under wet growth conditions because ice crystals are more likely to stick to the wet surface of a hailstone rather than bounce off it. Experiments were carried out in the laboratory to investigate if there was any charge separated when vapor-grown ice crystals bounced off a wet hailstone. A cloud of supercooled droplets, with and without ice crystals, was drawn past a simulated hailstone. In the dry growth regime, the hailstone charged strongly positive when droplets and crystals co-existed in the cloud. With only droplets in the cloud, there was no charging in the dry growth regime. However, as the hailstone attained wet growth, positive charging currents of about 0.5 and 3.5 pA were observed at 12 and 20 m s-1, respectively. We hypothesize that this observed charging was due to the evaporation of melt water. This so called Dinger-Gunn Effect is due to the ejection of negatively charged minute droplets produced by air bubbles bursting at the surface of the melt water. However the charge separated in wet growth was an order of magnitude smaller than that in dry growth and, therefore, we conclude that it is unlikely to play an important role in the electrification of thunderstorms.
Resumo:
What enables people to bounce back from stressful experiences? How do certain individuals maintain a sense of purpose and direction over the long term, even in the face of adversity? This is the first book to move beyond childhood and adolescence to explore resilience across the lifespan. Coverage ranges from genetic and physiological factors through personal, family, organizational, and community processes. Contributors examine how resilience contributes to health and well-being across the adult life cycle; why—and what happens when—resilience processes fail; ethnic and cultural dimensions of resilience; and ways to enhance adult resilience, including reviews of exemplary programs.
Resumo:
What enables people to bounce back from stressful experiences? How do certain individuals maintain a sense of purpose and direction over the long term, even in the face of adversity? This is the first book to move beyond childhood and adolescence to explore resilience across the lifespan. Coverage ranges from genetic and physiological factors through personal, family, organizational, and community processes. Contributors examine how resilience contributes to health and well-being across the adult life cycle; why—and what happens when—resilience processes fail; ethnic and cultural dimensions of resilience; and ways to enhance adult resilience, including reviews of exemplary programs.
Resumo:
This thesis concerns the development of mathematical models to describe the interactions that occur between spray droplets and leaves. Models are presented that not only provide a contribution to mathematical knowledge in the field of fluid dynamics, but are also of utility within the agrichemical industry. The thesis is presented in two parts. First, thin film models are implemented with efficient numerical schemes in order to simulate droplets on virtual leaf surfaces. Then the interception event is considered, whereby energy balance techniques are employed to instantaneously predict whether an impacting droplet will bounce, splash, or adhere to a leaf.