10 resultados para bisphenol A

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organo Arizona SAz-2 Ca-montmorillonite was prepared with different surfactant (DDTMA and HDTMA) loadings through direct ion exchange. The structural properties of the prepared organoclays were characterized by XRD and BET instruments. Batch experiments were carried out on the adsorption of bisphenol A (BPA) under different experimental conditions of pH and temperature to determine the optimum adsorption conditions. The hydrophobic phase and positively charged surface created by the loaded surfactant molecules are responsible for the adsorption of BPA. The adsorption of BPA onto organoclays is well described by pseudo-second order kinetic model and the Langmuir isotherm. The maximum adsorption capacity of the organoclays for BPA obtained from a Langmuir isotherm was 151.52 mg/g at 297 K. This value is among the highest values for BPA adsorption compared with other adsorbents. In addition, the adsorption process was spontaneous and exothermic based on the adsorption thermodynamics study. The organoclays intercalated with longer chain surfactant molecules possessed a greater adsorption capacity for BPA even under alkaline conditions. This process provides a pathway for the removal of BPA from contaminated waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bisphenol A (BPA or 4,4’-(propane-2,2-diyl)diphenol) is a chemical intermediate in the production of polycarbonate and epoxy resins, and used in a wide range of applications. BPA has attracted significant attention in the past decade due to its frequency of detection in human populations worldwide, demonstrated animal toxicity and potential impact on human health, particularly during critical periods of development. The aim of this study was to perform a preliminary assessment of age-related trends in urinary concentration and to estimate daily excretion of BPA in Australian children (aged (>0 – <5 years) and adults (≥15 – <75 years). This was achieved using 79 samples pooled by age and gender, created from 868 individual samples of convenience collected as part of routine, community-based pathology testing. Total BPA was analyzed using online-SPE-LC-MS/MS and detected in all samples with a range of 0.65 – 265 ng/ml. No significant differences were observed between males and females. A urine flow model was constructed from published values and used to provide an estimate of daily excretion per unit bodyweight for each pooled sample. The daily excretion estimates ranged from 26.2 – 18200 ng/kg-d for children; and 20.1 – 165 ng/kg-d for adults. Urinary concentrations and estimated excretion rates were inversely associated with age, and estimated daily excretion rates in infants and young children were significantly higher than in adults (geometric mean: 107 and 47.0 ng/kg-d, respectively). Higher excretion of BPA in children may be explained by their higher food consumption relative to body weight compared to adults and adolescents, and may also reflect alternative exposure pathways and sources. Keywords: bisphenol A, biomonitoring, children, urine flow, Australia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Used frequently in food contact materials, bisphenol A (BPA) has been studied extensively in recent years, and ubiquitous exposure in the general population has been demonstrated worldwide. Characterising within- and between-individual variability of BPA concentrations is important for characterising exposure in biomonitoring studies, and this has been investigated previously in adults, but not in children. The aim of this study was to characterise the short-term variability of BPA in spot urine samples in young children. Children aged ≥2-<4 years (n = 25) were recruited from an existing cohort in Queensland Australia, and donated four spot urine samples each over a two day period. Samples were analysed for total BPA using isotope dilution online solid phase extraction-liquid chromatography-tandem mass spectrometry, and concentrations ranged from 0.53–74.5 ng/ml, with geometric mean and standard deviation of 2.70 ng/ml and 2.94 ng/ml, respectively. Sex and time of sample collection were not significant predictors of BPA concentration. The between-individual variability was approximately equal to the within-individual variability (ICC = 0.51), and this ICC is somewhat higher than previously reported literature values. This may be the result of physiological or behavioural differences between children and adults or of the relatively short exposure window assessed. Using a bootstrapping methodology, a single sample resulted in correct tertile classification approximately 70% of the time. This study suggests that single spot samples obtained from young children provide a reliable characterization of absolute and relative exposure over the short time window studied, but this may not hold true over longer timeframes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bisphenol A (BPA) is used extensively in food-contact materials and has been detected routinely in populations worldwide, and this exposure has been linked to a range of negative health outcomes in humans. There is some evidence of an association between BPA and different socioeconomic variables which may be the result of different dietary patterns. The aim of this study was to conduct a preliminary investigation of the association between BPA and socioeconomic status in Australian children using pooled urine specimens and an area level socioeconomic index. Surplus pathology urine specimens collected from children aged 0-15 years in Queensland, Australia as samples of convenience (n = 469) were pooled by age, sex and area level socioeconomic index (n = 67 pools), and analysed for total BPA using online solid phase extraction LC-MS/MS. Concentration ranged from 1.08-27.4 ng/ml with geometric mean 2.57 ng/ml, and geometric mean exposure was estimated as 70.3 ng/kg d-1. Neither BPA concentration nor excretion was associated with age or sex, and the authors found no evidence of an association with socioeconomic status. These results suggest that BPA exposure is not associated with socioeconomic status in the Australian population due to relatively homogenous exposures in Australia, or that the socioeconomic gradient is relatively slight in Australia compared with other OECD countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remediation of bisphenol A (BPA) from aqueous solutions by adsorption using organoclays synthesized from montmorillonite (MMT) with different types of organic surfactant molecules was demonstrated. High adsorption capacities of the organoclays for the uptake of BPA were observed and these demonstrated their potential application as strong adsorbents for noxious organic water contaminants. The adsorption of BPA was significantly influenced by pH, with increased adsorption of BPA in acidic pH range. However, the organoclays intercalated with highly loaded surfactants and/or large surfactant molecules were less influenced by the pH of the environment and this was thought to be due to the shielding the negative charge from surfactant molecules and the development of more positive charge on the clay surface, which leads to the attraction of anionic BPA even at alkaline pH. The hydrophobic phase created by loaded surfactant molecules contributed to a partitioning phase, interacting with BPA molecules strongly through hydrophobic interaction. Pseudo-second order kinetic model and Langmuir isotherm provided the best fit for the adsorption of BPA onto the organoclays. In addition, the adsorption process was spontaneous and exothermic with lower temperature facilitating the adsorption of BPA onto the organoclays. The described process provides a potential pathway for the removal of BPA from contaminated waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bisphenol-A (BPA) adsorption onto inorganic-organic clays (IOCs) was investigated. For this purpose, IOCs synthesised using octadecyltrimethylammonium bromide (ODTMA, organic modifier) and hydroxy aluminium (Al13, inorganic modifier) were used. Three intercalation methods were employed with varying ODTMA concentration in the synthesis of IOCs. Molecular interactions of clay surfaces with ODTMA and Al13 and their arrangements within the interlayers were determined using Fourier transform infrared spectroscopy (FTIR). Surface area and porous structure of IOCs were determined by applying Brunauer, Emmett, and Teller (BET) method to N2 adsorption-desorption isotherms. Surface area decreased upon ODTMA intercalation while it increased with Al13 pillaring. As a result, BET specific surface area of IOCs was considerably higher than those of organoclays. Initial concentration of BPA, contact time and adsorbent dose significantly affected BPA adsorption into IOCs. Pseudo-second order kinetics model is the best fit for BPA adsorption into IOCs. Both Langmuir and Freundlich adsorption isotherms were applicable for BPA adsorption (R2 > 0.91) for IOCs. Langmuir maximum adsorption capacity for IOCs was as high as 109.89 mg g‒1 and it was closely related to the loaded ODTMA amount into the clay. Hydrophobic interactions between long alkyl chains of ODTMA and BPA are responsible for BPA adsorption into IOCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The period of developmental vulnerability to toxicants begins at conception and extends through gestation, parturition, infanthood and childhood to adolescence. The concern is that children: (1) may experience quantitatively and qualitatively different exposures, and (2) may have different sensitivity to chemical pollutants. Traditional toxicological studies are inappropriate for assessing the results of chronic exposure at very low levels during critical periods of development. This paper will discuss (1) the health effects associated with exposure to selected emerging organic pollutants, including brominated flame retardants, perfluorinated compounds, organophosphate pesticides and bisphenol A; (2) difficulties in monitoring these substances in children, and (3) suggest techniques and strategies for overcoming these difficulties. Such biomonitoring data can be used to identify where policies should be directed in order to reduce exposure, and to document policies that have successfully reduced exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of graphene oxide (GO) on the mechanical properties and the curing reaction of Diglycidyl Ether of Bisphenol A/F and Triethylenetetramine epoxy system was investigated. GO was prepared by oxidation of graphite flakes and characterized by spectroscopic and microscopic techniques. Epoxy nanocomposites were fabricated with different GO loading by solution mixing technique. It was found that incorporation of small amount of GO into the epoxy matrix significantly enhanced the mechanical properties of the epoxy. In particular, model I fracture toughness was increased by nearly 50% with the addition of 0.1 wt. % GO to epoxy. The toughening mechanism was understood by fractography analysis of the tested samples. The more irregular, coarse, and multi-plane fracture surfaces of the epoxy/GO nanocomposites were observed. This implies that the two-dimensional GO sheets effectively disturbed and deflected the crack propagation. At 0.5 wt. % GO, elastic modulus was ~35% greater than neat epoxy. Differential scanning calorimetry (DSC) results showed that GO addition moderately affect the glass transition temperature (Tg) of epoxy. The maximum decrease of Tg by ~7 oC was shown for the nanocomposite with 0.5 wt. % GO. DSC results further revealed that GO significantly hindered the cure reaction in the epoxy system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of graphene oxide (GO) and its surface oxidized debris (OD) on the cure chemistry of an amine cured epoxy resin has been investigated by Fourier Transform Infrared Emission Spectroscopy (FT-IES) and Differential Scanning Calorimetry (DSC). Spectral analysis of IR radiation emitted at the cure temperature from thin films of diglycidyl ether of bisphenol A epoxy resin (DGEBA) and 4,4'-diaminodiphenylmethane (DDM) curing agent with and without GO allowed the cure kinetics of the interphase between the bulk resin and GO to be monitored in real time, by measuring both the consumption of primary (1°) amine and epoxy groups, formation of ether groups as well as computing the profiles for formation of secondary (2°) and tertiary (3°) amines. OD was isolated from as-produced GO (aGO) by a simple autoclave method to give OD-free autoclaved GO (acGO). It has been found that the presence of OD on the GO prevents active sites on GO surfaces fully catalysing and participating in the reaction of DGEBA with DDM, which results in slower reaction and a lower crosslink density of the three-dimensional networks in the aGO-resin interphase compared to the acGO-resin interphase. We also determined that OD itself promoted DGEBA homopolymerization. A DSC study further confirmed that the aGO nanocomposite exhibited lower Tg while acGO nanocomposite showed higher Tg compared to neat resin because of the difference in crosslink densities of the matrix around the different GOs.