33 resultados para biogeochemical cycling
em Queensland University of Technology - ePrints Archive
Resumo:
Bacterially mediated iron redox cycling exerts a strong influence on groundwater geochemistry, but few studies have investigated iron biogeochemical processes in coastal alluvial aquifers from a microbiological viewpoint. The shallow alluvial aquifer located adjacent to Poona estuary on the subtropical Southeast Queensland coast represents a redox-stratified system where iron biogeochemical cycling potentially affects water quality. Using a 300 m transect of monitoring wells perpendicular to the estuary, we examined groundwater physico-chemical conditions and the occurrence of cultivable bacterial populations involved in iron (and manganese, sulfur) redox reactions in this aquifer. Results showed slightly acidic and near-neutral pH, suboxic conditions and an abundance of dissolved iron consisting primarily of iron(II) in the majority of wells. The highest level of dissolved iron(III) was found in a well proximal to the estuary most likely a result of iron curtain effects due to tidal intrusion. A number of cultivable, (an)aerobic bacterial populations capable of diverse carbon, iron, or sulfur metabolism coexisted in groundwater redox transition zones. Our findings indicated aerobic, heterotrophic respiration and bacterially mediated iron/sulfur redox reactions were integral to carbon cycling in the aquifer. High abundances of dissolved iron and cultivable iron and sulfur bacterial populations in estuary-adjacent aquifers have implications for iron transport to marine waters. This study demonstrated bacterially mediated iron redox cycling and associated biogeochemical processes in subtropical coastal groundwaters using culture-based methods.
Resumo:
Microorganisms play key roles in biogeochemical cycling by facilitating the release of nutrients from organic compounds. In doing so, microbial communities use different organic substrates that yield different amounts of energy for maintenance and growth of the community. Carbon utilization efficiency (CUE) is a measure of the efficiency with which substrate carbon is metabolized versus mineralized by the microbial biomass. In the face of global change, we wanted to know how temperature affected the efficiency by which the soil microbial community utilized an added labile substrate, and to determine the effect of labile soil carbon depletion (through increasing duration of incubation) on the community's ability to respond to an added substrate. Cellobiose was added to soil samples as a model compound at several times over the course of a long-term incubation experiment to measure the amount of carbon assimilated or lost as CO2 respiration. Results indicated that in all cases, the time required for the microbial community to take up the added substrate increased as incubation time prior to substrate addition increased. However, the CUE was not affected by incubation time. Increased temperature generally decreased CUE, thus the microbial community was more efficient at 15 degrees C than at 25 degrees C. These results indicate that at warmer temperatures microbial communities may release more CO2 per unit of assimilated carbon. Current climate-carbon models have a fixed CUE to predict how much CO2 will be released as soil organic matter is decomposed. Based on our findings, this assumption may be incorrect due to variation of CUE with changing temperature. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
To shed light on the potential efficacy of cycling as a testing modality in the treatment of intermittent claudication (IC), this study compared physiological and symptomatic responses to graded walking and cycling tests in claudicants. Sixteen subjects with peripheral arterial disease (resting ankle: brachial index (ABI) < 0.9) and IC completed a maximal graded treadmill walking (T) and cycle (C) test after three familiarization tests on each mode. During each test, symptoms, oxygen uptake (VO2), minute ventilation (VE), respiratory exchange ratio (RER) and heart rate (HR) were measured, and for 10 min after each test the brachial and ankle systolic pressures were recorded. All but one subject experienced calf pain as the primary limiting symptom during T; whereas the symptoms were more varied during C and included thigh pain, calf pain and dyspnoea. Although maximal exercise time was significantly longer on C than T (690 +/- 67 vs. 495 +/- 57 s), peak VO2, peak VE and peak heart rate during C and T were not different; whereas peak RER was higher during C. These responses during C and T were also positively correlated (P < 0.05) with each other, with the exception of RER. The postexercise systolic pressures were also not different between C and T. However, the peak decline in ankle pressures from resting values after C and T were not correlated with each other. These data demonstrate that cycling and walking induce a similar level of metabolic and cardiovascular strain, but that the primary limiting symptoms and haemodynamic response in an individual's extremity, measured after exercise, can differ substantially between these two modes.
Resumo:
Solar Cities Congress 2008 “Energising Sustainable Communities – Options for Our Future” THEME 3: Climate Change. Impact on Society and Culture. Sub Theme: planning and implementing holistic strategies for sustainable transport Abstract Promoting the use of cycling as an environmentally and socially sustainable form of transport. We need to reduce carbon emissions. We need to reduce fuel consumption. We need to reduce pollution. We need to reduce traffic congestion. As obesity levels and associated health problems in the developed nations continue to increase we need to adopt a healthier lifestyle. Few if any would argue with these statements. In fact many would consider these problems to be amongst the most urgent that our society faces. What if we had a vehicle that uses no fossil fuel to power it, creates no pollution, takes up far less space on the roads and promotes an active, healthy lifestyle. What if this machine would have energy efficiency levels 50 times greater than the car? This is a solution that is here, now and ready to go and many of us already own one. It is the humble bicycle. Although bicycle sales in Australia now outnumber car sales, bicycle use as a form of transport (as opposed to recreation) only constitutes around 3% to 4% of all trips. So, why are bicycles the forgotten form of transport if they promise to deliver the benefits that I have just outlined? This paper examines the underlying reasons for the relatively low use of bicycles as a means of transport. It identifies the areas of greatest potential for encouraging the use of the world’s most efficient form of transport. Tim Williams - May 2007
Resumo:
Although the "slow" phase of pulmonary oxygen uptake (Vo2) appears to represent energetic processes in contracting muscle, electromyographic evidence tends not to support this. The present study assessed normalized integrated electromyographic (NIEMG) activity in eight muscles that act about the hip, knee and ankle during 8 min of moderate (
Resumo:
The importance of pacing for middle-distance performance is well recognized, yet previous research has produced equivocal results. Twenty-six trained male cyclists (O2peak 62.8 ± 5.9 ml · kg-1 · min-1; maximal aerobic power output 340 ± 43 W; mean ± s) performed three cycling time-trials where the total external work (102.7 ± 13.7 kJ) for each trial was identical to the best of two 5-min habituation trials. Markers of aerobic and anaerobic metabolism were assessed in 12 participants. Power output during the first quarter of the time-trials was fixed to control external mechanical work done (25.7 ± 3.4 kJ) and induce fast-, even-, and slow-starting strategies (60, 75, and 90 s, respectively). Finishing times for the fast-start time-trial (4:53 ± 0:11 min:s) were shorter than for the even-start (5:04 ± 0:11 min:s; 95% CI = 5 to 18 s, effect size = 0.65, P < 0.001) and slow-start time-trial (5:09 ± 0:11 min:s; 95% CI = 7 to 24 s, effect size = 1.00, P < 0.001). Mean O2 during the fast-start trials (4.31 ± 0.51 litres · min-1) was 0.18 ± 0.19 litres · min-1 (95% CI = 0.07 to 0.30 litres · min-1, effect size = 0.94, P = 0.003) higher than the even- and 0.18 ± 0.20 litres · min-1 (95% CI = 0.5 to 0.30 litres · min-1, effect size = 0.86, P = 0.007) higher than the slow-start time-trial. Oxygen deficit was greatest during the first quarter of the fast-start trial but was lower than the even- and slow-start trials during the second quarter of the trial. Blood lactate and pH were similar between the three trials. In conclusion, performance during a 5-min cycling time-trial was improved with the adoption of a fast- rather than an even- or slow-starting strategy.
Resumo:
Purpose: To examine the influence of two different fast-start pacing strategies on performance and oxygen consumption (V˙O2) during cycle ergometer time trials lasting ∼5 min. Methods: Eight trained male cyclists performed four cycle ergometer time trials whereby the total work completed (113 ± 11.5 kJ; mean ± SD) was identical to the better of two 5-min self-paced familiarization trials. During the performance trials, initial power output was manipulated to induce either an all-out or a fast start. Power output during the first 60 s of the fast-start trial was maintained at 471.0 ± 48.0 W, whereas the all-out start approximated a maximal starting effort for the first 15 s (mean power: 753.6 ± 76.5 W) followed by 45 s at a constant power output (376.8 ± 38.5 W). Irrespective of starting strategy, power output was controlled so that participants would complete the first quarter of the trial (28.3 ± 2.9 kJ) in 60 s. Participants performed two trials using each condition, with their fastest time trial compared. Results: Performance time was significantly faster when cyclists adopted the all-out start (4 min 48 s ± 8 s) compared with the fast start (4 min 51 s ± 8 s; P < 0.05). The first-quarter V˙O2 during the all-out start trial (3.4 ± 0.4 L·min-1) was significantly higher than during the fast-start trial (3.1 ± 0.4 L·min-1; P < 0.05). After removal of an outlier, the percentage increase in first-quarter V˙O2 was significantly correlated (r = -0.86, P < 0.05) with the relative difference in finishing time. Conclusions: An all-out start produces superior middle distance cycling performance when compared with a fast start. The improvement in performance may be due to a faster V˙O2 response rather than time saved due to a rapid acceleration.
Resumo:
Pedestrian and cyclist injuries are significant public health issues together accounting for 11-30% of road deaths in highly motorised countries. Children are particularly at risk. In Australia in 2009 children 0-16 years comprised 11.4% of pedestrian deaths and 6.4% of cyclist deaths. Parental attitudes and level of supervision are important to children’s road safety. Results from a telephone survey with parents of children 5-9 years (N=147) are reported. Questions addressed beliefs about preventability of injury, appropriate ages for children to cross the road or cycle independently, and the frequency of holding 5-9 year old children’s hands while crossing the road. Results suggest that parents believe most injuries are preventable and that they personally can act to improve their own safety in the home, on the road, at work, as well as in or on the water. Most parents (68%) indicated children should be 10 years or older before crossing the road or cycling independently. Parents were more likely to report holding younger children’s hands (5-6 years) when crossing the road and less likely to do so for 7-9 year olds. There was a small effect of child gender, with parents more likely to hold boy’s hand than a girl’s.
Resumo:
This paper addresses the tradeoff between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty in order to prolong node lifetime. We use empirical GPS and radio contact data from a largescale animal tracking deployment to model node mobility, GPS and radio performance. These models are used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose a versatile contact logging strategy that relies on RSSI ranging and GPS lock back-offs for reducing the node energy consumption relative to GPS duty cycling. Results show that our strategy can cut the node energy consumption by half while meeting application specific positioning criteria.
Resumo:
Background: Initiatives to promote utility cycling in countries like Australia and the US, which have low rates of utility cycling, may be more effective if they first target recreational cyclists. This study aimed to describe patterns of utility cycling and examine its correlates, among cyclists in Queensland, Australia. Methods: An online survey was administered to adult members of a state-based cycling community and advocacy group (n=1813). The survey asked about demographic characteristics and cycling behavior, motivators and constraints. Utility cycling patterns were described, and logistic regression modeling was used to examine associations between utility cycling and other variables. Results: Forty-seven percent of respondents reported utility cycling: most did so to commute (86%). Most journeys (83%) were >5 km. Being male, younger, employed full-time, or university-educated increased the likelihood of utility cycling (p<0.05). Perceiving cycling to be a cheap or a convenient form of transport were associated with utility cycling (p<0.05). Conclusions: The moderate rate of utility cycling among recreational cyclists highlights a potential to promote utility cycling among this group. To increase utility cycling, strategies should target female and older recreational cyclists and focus on making cycling a cheap and convenient mode of transport.
Resumo:
The purpose of the present study was to compare the effects of cold water immersion (CWI) and active recovery (ACT) on resting limb blood flow, rectal temperature and repeated cycling performance in the heat. Ten subjects completed two testing sessions separated by 1 week; each trial consisted of an initial all-out 35-min exercise bout, one of two 15-min recovery interventions (randomised: CWI or ACT), followed by a 40-min passive recovery period before repeating the 35-min exercise bout. Performance was measured as the change in total work completed during the exercise bouts. Resting limb blood flow, heart rate, rectal temperature and blood lactate were recorded throughout the testing sessions. There was a significant decline in performance after ACT (mean (SD) −1.81% (1.05%)) compared with CWI where performance remained unchanged (0.10% (0.71%)). Rectal temperature was reduced after CWI (36.8°C (1.0°C)) compared with ACT (38.3°C (0.4°C)), as was blood flow to the arms (CWI 3.64 (1.47) ml/100 ml/min; ACT 16.85 (3.57) ml/100 ml/min) and legs (CW 4.83 (2.49) ml/100 ml/min; ACT 4.83 (2.49) ml/100 ml/min). Leg blood flow at the end of the second exercise bout was not different between the active (15.25 (4.33) ml/100 ml/min) and cold trials (14.99 (4.96) ml/100 ml/min), whereas rectal temperature (CWI 38.1°C (0.3°C); ACT 38.8°C (0.2°C)) and arm blood flow (CWI 20.55 (3.78) ml/100 ml/min; ACT 23.83 (5.32) ml/100 ml/min) remained depressed until the end of the cold trial. These findings indicate that CWI is an effective intervention for maintaining repeat cycling performance in the heat and this performance benefit is associated with alterations in core temperature and limb blood flow.
Resumo:
Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.
Resumo:
Recent increases in cycling have led to many media articles highlighting concerns about interactions between cyclists and pedestrians on footpaths and off-road paths. Under the Australian Road Rules, adults are not allowed to ride on footpaths unless accompanying a child 12 years of age or younger. However, this rule does not apply in Queensland. This paper reviews international studies that examine the safety of footpath cycling for both cyclists and pedestrians, and relevant Australian crash and injury data. The results of a survey of more than 2,500 Queensland adult cyclists are presented in terms of the frequency of footpath cycling, the characteristics of those cyclists and the characteristics of self-reported footpath crashes. A third of the respondents reported riding on the footpath and, of those, about two-thirds did so reluctantly. Riding on the footpath was more common for utilitarian trips and for new riders, although the average distance ridden on footpaths was greater for experienced riders. About 5% of distance ridden and a similar percentage of self-reported crashes occurred on footpaths. These data are discussed in terms of the Safe Systems principle of separating road users with vastly different levels of kinetic energy. The paper concludes that footpaths are important facilities for both inexperienced and experienced riders and for utilitarian riding, especially in locations riders consider do not provide a safe system for cycling.