688 resultados para behavioral models
em Queensland University of Technology - ePrints Archive
Resumo:
There are many use cases in business process management that require the comparison of behavioral models. For instance, verifying equivalence is the basis for assessing whether a technical workflow correctly implements a business process, or whether a process realization conforms to a reference process. This paper proposes an equivalence relation for models that describe behaviors based on the concurrency semantics of net theory and for which an alignment relation has been defined. This equivalence, called isotactics, preserves the level of concurrency of aligned operations. Furthermore, we elaborate on the conditions under which an alignment relation can be classified as an abstraction. Finally, we show that alignment relations induced by structural refinements of behavioral models are indeed behavioral abstractions.
Resumo:
Behavioral models capture operational principles of real-world or designed systems. Formally, each behavioral model defines the state space of a system, i.e., its states and the principles of state transitions. Such a model is the basis for analysis of the system’s properties. In practice, state spaces of systems are immense, which results in huge computational complexity for their analysis. Behavioral models are typically described as executable graphs, whose execution semantics encodes a state space. The structure theory of behavioral models studies the relations between the structure of a model and the properties of its state space. In this article, we use the connectivity property of graphs to achieve an efficient and extensive discovery of the compositional structure of behavioral models; behavioral models get stepwise decomposed into components with clear structural characteristics and inter-component relations. At each decomposition step, the discovered compositional structure of a model is used for reasoning on properties of the whole state space of the system. The approach is exemplified by means of a concrete behavioral model and verification criterion. That is, we analyze workflow nets, a well-established tool for modeling behavior of distributed systems, with respect to the soundness property, a basic correctness property of workflow nets. Stepwise verification allows the detection of violations of the soundness property by inspecting small portions of a model, thereby considerably reducing the amount of work to be done to perform soundness checks. Besides formal results, we also report on findings from applying our approach to an industry model collection.
Resumo:
Pavlovian fear conditioning is a robust technique for examining behavioral and cellular components of fear learning and memory. In fear conditioning, the subject learns to associate a previously neutral stimulus with an inherently noxious co-stimulus. The learned association is reflected in the subjects' behavior upon subsequent re-exposure to the previously neutral stimulus or the training environment. Using fear conditioning, investigators can obtain a large amount of data that describe multiple aspects of learning and memory. In a single test, researchers can evaluate functional integrity in fear circuitry, which is both well characterized and highly conserved across species. Additionally, the availability of sensitive and reliable automated scoring software makes fear conditioning amenable to high-throughput experimentation in the rodent model; thus, this model of learning and memory is particularly useful for pharmacological and toxicological screening. Due to the conserved nature of fear circuitry across species, data from Pavlovian fear conditioning are highly translatable to human models. We describe equipment and techniques needed to perform and analyze conditioned fear data. We provide two examples of fear conditioning experiments, one in rats and one in mice, and the types of data that can be collected in a single experiment. © 2012 Springer Science+Business Media, LLC.
Resumo:
This is a guidebook for clinicians on how to conduct assessment interviews with patients presenting with common psychological disorders. The orientation is behavioural and cognitive; so the book has wide applicability, as most clinicians explicitly or implicitly accept this combination of models as a useful basis for assessing and treating these problems. The problem areas covered are: fear and anxiety problems; depression, obesity; interpersonal problems; sexual dysfunction; insomnia; headache; and substance abuse.
Resumo:
As order dependencies between process tasks can get complex, it is easy to make mistakes in process model design, especially behavioral ones such as deadlocks. Notions such as soundness formalize behavioral errors and tools exist that can identify such errors. However these tools do not provide assistance with the correction of the process models. Error correction can be very challenging as the intentions of the process modeler are not known and there may be many ways in which an error can be corrected. We present a novel technique for automatic error correction in process models based on simulated annealing. Via this technique a number of process model alternatives are identified that resolve one or more errors in the original model. The technique is implemented and validated on a sample of industrial process models. The tests show that at least one sound solution can be found for each input model and that the response times are short.
Resumo:
This paper studies traffic hysteresis arising in traffic oscillations from a behavioral perspective. It is found that the occurrence and type of traffic hysteresis is closely correlated with driver behavior when experiencing traffic oscillations and with the time driver reaction begins relative to the starting deceleration wave. Statistical results suggest that driver behavior is different depending on its position along the oscillation. This suggests that different car-following models should be used inside the different stages of an oscillation in order to replicate realistic congestion features.
Resumo:
This article addresses the transformation of a process model with an arbitrary topology into an equivalent structured process model. In particular, this article studies the subclass of process models that have no equivalent well-structured representation but which, nevertheless, can be partially structured into their maximally-structured representation. The transformations are performed under a behavioral equivalence notion that preserves the observed concurrency of tasks in equivalent process models. The article gives a full characterization of the subclass of acyclic process models that have no equivalent well-structured representation, but do have an equivalent maximally-structured one, as well as proposes a complete structuring method. Together with our previous results, this article completes the solution of the process model structuring problem for the class of acyclic process models.
Resumo:
Anxiety traits can be stable and permanent characteristics of an individual across time that is less susceptible of influences by a particular situation. One way to study trait anxiety in an experimental context is through the use of rat lines, selected according to contrasting phenotypes of fear and anxiety. It is not clear whether the behavioral differences between two contrasting rat lines in one given anxiety test are also present in others paradigms of state anxiety. Here, we examine the extent to which multiple anxiety traits generalize across selected animal lines originally selected for a single anxiety trait. We review the behavioral results available in the literature of eight rat genetic models of trait anxiety - namely Maudsley Reactive and Non-reactive rats, Floripa H and L rats, Tsukuba High and Low Emotional rats, High and Low Anxiety-related rats, High and Low Ultrasonic Vocalization rats, Roman High and Low Avoidance rats, Syracuse High and Low Avoidance rats, and Carioca High and Low Conditioned Freezing rats - across 11 behavioral paradigms of innate anxiety or aversive learning frequently used in the experimental setting. We observed both convergence and divergence of behavioral responses in these selected lines across the 11 paradigms. We find that predisposition for specific anxiety traits will usually be generalized to other anxiety provoking stimuli. However this generalization is not observed across all genetic models indicating some unique trait and state interactions. Genetic models of enhanced-anxiety related responses are beginning to help define how anxiety can manifest differently depending on the underlying traits and the current environmentally induced state.
Resumo:
Process models specify behavioral aspects by describing ordering constraints between tasks which must be accomplished to achieve envisioned goals. Tasks usually exchange information by means of data objects, i.e., by writing information to and reading information from data objects. A data object can be characterized by its states and allowed state transitions. In this paper, we propose a notion which checks conformance of a process model with respect to data objects that its tasks access. This new notion can be used to tell whether in every execution of a process model each time a task needs to access a data object in a particular state, it is ensured that the data object is in the expected state or can reach the expected state and, hence, the process model can achieve its goals.
Resumo:
Discovering the means to prevent and cure schizophrenia is a vision that motivates many scientists. But in order to achieve this goal, we need to understand its neurobiological basis. The emergent metadiscipline of cognitive neuroscience fields an impressive array of tools that can be marshaled towards achieving this goal, including powerful new methods of imaging the brain (both structural and functional) as well as assessments of perceptual and cognitive capacities based on psychophysical procedures, experimental tasks and models developed by cognitive science. We believe that the integration of data from this array of tools offers the greatest possibilities and potential for advancing understanding of the neural basis of not only normal cognition but also the cognitive impairments that are fundamental to schizophrenia. Since sufficient expertise in the application of these tools and methods rarely reside in a single individual, or even a single laboratory, collaboration is a key element in this endeavor. Here, we review some of the products of our integrative efforts in collaboration with our colleagues on the East Coast of Australia and Pacific Rim. This research focuses on the neural basis of executive function deficits and impairments in early auditory processing in patients using various combinations of performance indices (from perceptual and cognitive paradigms), ERPs, fMRI and sMRI. In each case, integration of two or more sources of information provides more information than any one source alone by revealing new insights into structure-function relationships. Furthermore, the addition of other imaging methodologies (such as DTI) and approaches (such as computational models of cognition) offers new horizons in human brain imaging research and in understanding human behavior.
Resumo:
"First published in 1988, Ecological and Behavioral Methods for the Study of Bats is widely acknowledged as the primary reference for both amateur and professional bat researchers. Bats are the second most diverse group of mammals on the earth. They live on every continent except Antarctica, ranging from deserts to tropical forests to mountains, and their activities have a profound effect on the ecosystems in which they live. Despite their ubiquity and importance, bats are challenging to study. This volume provides researchers, conservationists, and consultants with the ecological background and specific information essential for studying bats in the wild and in captivity. Chapters detail many of the newest and most commonly used field and laboratory techniques needed to advance the study of bats, describe how these methods are applied to the study of the ecology and behavior of bats, and offer advice on how to interpret the results of research. The book includes forty-three chapters, fourteen of which are new to the second edition, with information on molecular ecology and evolution, bioacoustics, chemical communication, flight dynamics, population models, and methods for assessing postnatal growth and development. Fully illustrated and featuring contributions from the world’s leading experts in bat biology, this reference contains everything bat researchers and natural resource managers need to know for the study and conservation of this wide-ranging, ecologically vital, and diverse taxon."--Publisher website
Resumo:
Human factors such as distraction, fatigue, alcohol and drug use are generally ignored in car-following (CF) models. Such ignorance overestimates driver capability and leads to most CF models’ inability in realistically explaining human driving behaviors. This paper proposes a novel car-following modeling framework by introducing the difficulty of driving task measured as the dynamic interaction between driving task demand and driver capability. Task difficulty is formulated based on the famous Task Capability Interface (TCI) model, which explains the motivations behind driver’s decision making. The proposed method is applied to enhance two popular CF models: Gipps’ model and IDM, and named as TDGipps and TDIDM respectively. The behavioral soundness of TDGipps and TDIDM are discussed and their stabilities are analyzed. Moreover, the enhanced models are calibrated with the vehicle trajectory data, and validated to explain both regular and human factor influenced CF behavior (which is distraction caused by hand-held mobile phone conversation in this paper). Both the models show better performance than their predecessors, especially in presence of human factors.
Resumo:
Although paying taxes is a key element of a well-functioning society, there is still limited understanding as to why people actually pay their taxes. Models emphasizing that taxpayers make strategic, financially motivated compliance decisions seemingly assume an overly restrictive view of human nature. Law abidance may be more accurately explained by social norms, a concept that has gained growing importance as research attempts to understand the tax compliance puzzle. This study analyzes the influence of psychic stress generated by the possibility of breaking social norms in the tax compliance context. We measure psychic stress using heart rate variability (HRV), which captures the psychobiological or neural equivalents of psychic stress that may arise from the contemplation of real or imagined actions, producing immediate physiologic discomfort. The results of our laboratory experiments provide empirical evidence of a positive correlation between psychic stress and tax compliance, thus underscoring the importance of moral sentiments for tax compliance. We also identify three distinct types of individuals who differ in their levels of psychic stress, tax morale, and tax compliance.
Resumo:
Behavioral profiles have been proposed as a behavioral abstraction of dynamic systems, specifically in the context of business process modeling. A behavioral profile can be seen as a complete graph over a set of task labels, where each edge is annotated with one relation from a given set of binary behavioral relations. Since their introduction, behavioral profiles were argued to provide a convenient way for comparing pairs of process models with respect to their behavior or computing behavioral similarity between process models. Still, as of today, there is little understanding of the expressive power of behavioral profiles. Via counter-examples, several authors have shown that behavioral profiles over various sets of behavioral relations cannot distinguish certain systems up to trace equivalence, even for restricted classes of systems represented as safe workflow nets. This paper studies the expressive power of behavioral profiles from two angles. Firstly, the paper investigates the expressive power of behavioral profiles and systems captured as acyclic workflow nets. It is shown that for unlabeled acyclic workflow net systems, behavioral profiles over a simple set of behavioral relations are expressive up to configuration equivalence. When systems are labeled, this result does not hold for any of several previously proposed sets of behavioral relations. Secondly, the paper compares the expressive power of behavioral profiles and regular languages. It is shown that for any set of behavioral relations, behavioral profiles are strictly less expressive than regular languages, entailing that behavioral profiles cannot be used to decide trace equivalence of finite automata and thus Petri nets.