3 resultados para baits
em Queensland University of Technology - ePrints Archive
Resumo:
Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:00–16:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.
Resumo:
The use of malathion in fruit fly protein bait sprays has raised serious concerns due to its adverse effects on non-target organisms. This has necessitated the evaluation of novel reduced-risk compounds. This study evaluated the effects of spinosad, fipronil, malathion and chlorpyrifos mixed with fruit fly protein bait (Mauri Pinnacle protein®) on attraction, feeding and mortality of the Queensland fruit fly, Bactrocera tryoni (Froggatt). The effects of outdoor weathering of these mixtures on fly mortality were also determined. In field-cage experiment, protein-starved flies showed the same level of attraction to baits containing spinosad, fipronil, malathion, chlorpyrifos and protein alone used as control. Female protein-starved flies were deterred from feeding on baits containing malathion and chlorpyrifos compared to baits containing spinosad, fipronil and protein alone. Baits containing malathion and chlorpyrifos caused higher fly mortality and rapid fly knock down than spinosad and fipronil. However, spinosad acted slowly and caused an increase in fly mortality over time, causing up to 90% fly mortality after 72-h. Baits containing malathion and chlorpyrifos, applied on citrus leaves and weathered outdoors, had longer residual effectiveness in killing flies than spinosad and fipronil. Residual effectiveness of the spinosad bait mixture waned significantly after 3 days of outdoor weathering. Results suggest that spinosad and fipronil can be potential alternatives for malathion in protein bait sprays.
Resumo:
Poisoned protein baits comprise a recognized method for controlling tephritid fruit flies in the form of a ‘lure-and-kill’ technique. However, little is known about how a fly's internal protein and carbohydrate levels (i.e. nutritional status) might influence the efficacy of this control. In the present study, the relationships between the internal levels of protein (as measured by total body nitrogen) and carbohydrate (as measured by total body carbon) of the fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) are investigated, as well as its foraging behaviours in response to protein, fruit and cue-lure (a male-specific attractant) baits. Small cage behavioural experiments are conducted using flies from cultures of different nutritional status and wild flies sampled from the field during the fruiting cycle of a guava crop. For female flies, increasing total body nitrogen is correlated with decreased protein foraging and increased oviposition activity; increasing total body carbon levels generate the same behavioural changes except that the oviposition response is not significant. For males, there are no significant correlations between changes in total body nitrogen and total body carbon and protein or cue-lure foraging. For wild flies from the guava orchard, almost all of them are sexually mature when entering the crop and, over the entire season, total body nitrogen and total body carbon levels are such that protein hunger is unlikely for most flies. The results infer strongly that the requirements of wild, sexually mature flies for protein are minimal and that flies can readily gain sufficient nutrients from wild sources for their physiological needs. The results offer a mechanistic explanation for the poor response of male and mature female fruit flies to protein bait spray.