362 resultados para axial viewing
em Queensland University of Technology - ePrints Archive
Resumo:
Refraction may be affected by the forces of lids and extraocular muscles when eye direction and head direction are not aligned (oblique viewing) which might potentially influence past findings on peripheral refraction of the eye. We investigated the effect of oblique viewing on axial and peripheral refraction. In a first experiment, cycloplegic axial refractions were determined when subjects' heads were positioned to look straight-ahead through an open-view autorefractor and when the heads were rotated to the right or left by 30° with compensatory eye rotation (oblique viewing). Subjects were 16 young emmetropes (18–35 years), 22 young myopes (19–36 years) and 15 old emmetropes (45–60 years). In a second experiment, cycloplegic peripheral refraction measurements were taken out to ±34° horizontally from fixation while the subjects rotated their heads to match the peripheral refraction angles (eye in primary position with respect to the head) or the eyes were rotated with respect to the head (oblique viewing). Subjects were 10 emmetropes and 10 myopes. We did not find any significant changes in axial or peripheral refraction upon oblique viewing for any of the subject groups. In general for the range of horizontal angles used, it is not critical whether or not the eye is rotated with respect to the head during axial or peripheral refraction.
Resumo:
Purpose: To investigate the changes in axial length with the combined effect of accommodation and angle of gaze (convergence and downward gaze) over 5 minutes in groups of myopes and emmetropes. Methods: A total of 31 subjects (nine emmetropes, 10 low myopes, and 12 moderate to high myopes) aged from 18 to 31 years were recruited. To measure ocular biometrics in inferonasal gaze with accommodation, an optical biometer (Lenstar LS900) was inclined on a tilt and height adjustable stage, with the subject’s chinrest mounted on a rotary stage to induce various levels of convergence by rotation of the subject’s head in primary or downward gaze. Initially, the subjects performed a distance viewing task in primary gaze for 10 minutes to provide a ‘wash-out’ period for prior visual tasks, and then the subject’s axial length and ocular biometrics were measured in nine different combinations of gaze/accommodation over 5 minutes. These nine sessions for all gaze measurements (i.e. three levels of accommodation 9 three levels of convergence) were completed across 3 days of testing (one accommodation condition on each day).The nine combinations of gaze/accommodation were based on those required to view the centre, right and left edges of a distant TV at 6 m in primary gaze, an intermediate task (i.e. computer at 50 cm in 10° downward gaze) and a near task (i.e. reading A4 page at 20 cm in 20° downward gaze). Subjects were wearing a custom built three-axes head tracker throughout the experiment that monitored subjects’ relative head movements (roll, pitch and yaw) during measurements. Results: A significant increase in axial length occurred with the combined effect of accommodation, convergence and downward gaze (repeated measures ANOVA, p < 0.001), with the greatest axial elongation during the near task in downward gaze with convergence (i.e. downward 20°/inward 33°, with 5 D accommodation) (mean change 33 ± 13 lm, after 5 minutes task) followed by the intermediate task (i.e. downward 10°/inward 25°, with 2 D accommodation) (mean change 14 ± 11 lm, after 5 minutes task).Changes in axial length for the distance task (i.e. primary gaze/9° convergence, with 0.16 D accommodation) were not statistically significant (mean change 4 ± 8 lm, after 5 minutes task, p > 0.05). Moderate to high myopes had a greater change in the axial length (mean change 40 ± 11 lm after 5 minutes of near task) than that of emmetropes (mean change 29 ± 15 lm after 5 minutes of near task) and low myopes (mean change 29 ± 16 lm after 5 minutes of near task) associated with time (p = 0.02) and accommodation by time (p = 0.03). Conclusions: The combination of accommodation, convergence and downward angle has a significant short term effect on axial length over time. The near task in downward gaze with convergence caused a greater change in axial length than the intermediate and distant visual tasks. The greater axial elongation measured in the infero-nasal direction with accommodation is most likely associated with a combination of biomechanical factors such as, extraocular muscle forces and ciliary muscle contraction.
Resumo:
Thoracoscopic instrumented anterior spinal fusion for adolescent idiopathic scoliosis (AIS) has clinical benefits that include reduced pulmonary morbidity, postoperative pain, and improved cosmesis. However, quantitative data on radiological improvement of vertebral rotation using this method is lacking. This study’s objectives were to measure preoperative and postoperative axial vertebral rotational deformity at the curve apex in endoscopically-treated anterior-instrumented scoliosis patients using CT, and assess the relevance of these findings to clinically measured chest wall rib hump deformity correction. This is the first quantitative CT study to confirm that endoscopic anterior instrumented fusion for AIS substantially improves axial vertebral body rotational deformity at the apex of the curve. The margin of correction of 43% compares favourably with historically published figures of 24% for patients with posterior all-hook-rod constructs. CT measurements correlated significantly to the clinical outcome of rib hump deformity correction.
Resumo:
Top screw pullout occurs when the screw is under too much axial force to remain secure in the vertebral body. In vitro biomechanical pullout tests are commonly done to find the maximum fixation strength of anterior vertebral body screws. Typically, pullout tests are done instantaneously where the screw is inserted and then pulled out immediately after insertion. However, bone is a viscoelastic material so it shows a time dependent stress and strain response. Because of this property, it was hypothesised that creep occurs in the vertebral trabecular bone due to the stress caused by the screw. The objective of this study was therefore to determine whether the axial pullout strength of anterior vertebral body screws used for scoliosis correction surgery changes with time after insertion. This study found that there is a possible relationship between pullout strength and time; however more testing is required as the sample numbers were quite small. The design of the screw is made with the knowledge of the strength it must obtain. This is important to prevent such occurrences as top screw pullout. If the pullout strength is indeed decreased due to creep, the design of the screw may need to be changed to withstand greater forces.
Resumo:
Differential axial shortening, distortion and deformation in high rise buildings is a serious concern. They are caused by three time dependent modes of volume change; “shrinkage”, “creep” and “elastic shortening” that takes place in every concrete element during and after construction. Vertical concrete components in a high rise building are sized and designed based on their strength demand to carry gravity and lateral loads. Therefore, columns and walls are sized, shaped and reinforced differently with varying concrete grades and volume to surface area ratios. These structural components may be subjected to the detrimental effects of differential axial shortening that escalates with increasing the height of buildings. This can have an adverse impact on other structural and non-structural elements. Limited procedures are available to quantify axial shortening, and the results obtained from them differ because each procedure is based on various assumptions and limited to few parameters. All these prompt to a need to develop an accurate numerical procedure to quantify the axial shortening of concrete buildings taking into account the important time varying functions of (i) construction sequence (ii) Young’s Modulus and (iii) creep and shrinkage models associated with reinforced concrete. General assumptions are refined to minimize variability of creep and shrinkage parameters to improve accuracy of the results. Finite element techniques are used in the procedure that employs time history analysis along with compression only elements to simulate staged construction behaviour. This paper presents such a procedure and illustrates it through an example. Keywords: Differential Axial Shortening, Concrete Buildings, Creep and Shrinkage, Construction Sequence, Finite Element Method.
Resumo:
Preterm infants have an increased risk of low bone mass and subsequent fracture due to limited bone mass accretion in utero and a greater need for bone nutrients. The diagnosis of ostepeonia of prematurity remains difficult as there is no sctreening test which is both sensitive and specific.
Resumo:
Purpose: Television viewing time, independent of leisure-time physical activity, has cross-sectional relationships with the metabolic syndrome and its individual components. We examined whether baseline and five-year changes in self-reported television viewing time are associated with changes in continuous biomarkers of cardio-metabolic risk (waist circumference, triglycerides, high density lipoprotein cholesterol, systolic and diastolic blood pressure, fasting plasma glucose; and a clustered cardio-metabolic risk score) in Australian adults. Methods: AusDiab is a prospective, population-based cohort study with biological, behavioral, and demographic measures collected in 1999–2000 and 2004–2005. Non-institutionalized adults aged ≥ 25 years were measured at baseline (11,247; 55% of those completing an initial household interview); 6,400 took part in the five-year follow-up biomedical examination, and 3,846 met the inclusion criteria for this analysis. Multiple linear regression analysis was used and unstandardized B coefficients (95% CI) are provided. Results: Baseline television viewing time (10 hours/week unit) was not significantly associated with change in any of the biomarkers of cardio-metabolic risk. Increases in television viewing time over five years (10 hours/week unit) were associated with increases in: waist circumference (cm) (men: 0.43 (0.08, 0.78), P = 0.02; women: 0.68 (0.30, 1.05), P <0.001), diastolic blood pressure (mmHg) (women: 0.47 (0.02, 0.92), P = 0.04), and the clustered cardio-metabolic risk score (women: 0.03 (0.01, 0.05), P = 0.007). These associations were independent of baseline television viewing time and baseline and change in physical activity and other potential confounders. Conclusion: These findings indicate that an increase in television viewing time is associated with adverse cardio-metabolic biomarker changes. Further prospective studies using objective measures of several sedentary behaviors are required to confirm causality of the associations found.
Resumo:
Aberrations affect image quality of the eye away from the line of sight as well as along it. High amounts of lower order aberrations are found in the peripheral visual field and higher order aberrations change away from the centre of the visual field. Peripheral resolution is poorer than that in central vision, but peripheral vision is important for movement and detection tasks (for example driving) which are adversely affected by poor peripheral image quality. Any physiological process or intervention that affects axial image quality will affect peripheral image quality as well. The aim of this study was to investigate the effects of accommodation, myopia, age, and refractive interventions of orthokeratology, laser in situ keratomileusis and intraocular lens implantation on the peripheral aberrations of the eye. This is the first systematic investigation of peripheral aberrations in a variety of subject groups. Peripheral aberrations can be measured either by rotating a measuring instrument relative to the eye or rotating the eye relative to the instrument. I used the latter as it is much easier to do. To rule out effects of eye rotation on peripheral aberrations, I investigated the effects of eye rotation on axial and peripheral cycloplegic refraction using an open field autorefractor. For axial refraction, the subjects fixated at a target straight ahead, while their heads were rotated by ±30º with a compensatory eye rotation to view the target. For peripheral refraction, the subjects rotated their eyes to fixate on targets out to ±34° along the horizontal visual field, followed by measurements in which they rotated their heads such that the eyes stayed in the primary position relative to the head while fixating at the peripheral targets. Oblique viewing did not affect axial or peripheral refraction. Therefore it is not critical, within the range of viewing angles studied, if axial and peripheral refractions are measured with rotation of the eye relative to the instrument or rotation of the instrument relative to the eye. Peripheral aberrations were measured using a commercial Hartmann-Shack aberrometer. A number of hardware and software changes were made. The 1.4 mm range limiting aperture was replaced by a larger aperture (2.5 mm) to ensure all the light from peripheral parts of the pupil reached the instrument detector even when aberrations were high such as those occur in peripheral vision. The power of the super luminescent diode source was increased to improve detection of spots passing through the peripheral pupil. A beam splitter was placed between the subjects and the aberrometer, through which they viewed an array of targets on a wall or projected on a screen in a 6 row x 7 column matrix of points covering a visual field of 42 x 32. In peripheral vision, the pupil of the eye appears elliptical rather than circular; data were analysed off-line using custom software to determine peripheral aberrations. All analyses in the study were conducted for 5.0 mm pupils. Influence of accommodation on peripheral aberrations was investigated in young emmetropic subjects by presenting fixation targets at 25 cm and 3 m (4.0 D and 0.3 D accommodative demands, respectively). Increase in accommodation did not affect the patterns of any aberrations across the field, but there was overall negative shift in spherical aberration across the visual field of 0.10 ± 0.01m. Subsequent studies were conducted with the targets at a 1.2 m distance. Young emmetropes, young myopes and older emmetropes exhibited similar patterns of astigmatism and coma across the visual field. However, the rate of change of coma across the field was higher in young myopes than young emmetropes and was highest in older emmetropes amongst the three groups. Spherical aberration showed an overall decrease in myopes and increase in older emmetropes across the field, as compared to young emmetropes. Orthokeratology, spherical IOL implantation and LASIK altered peripheral higher order aberrations considerably, especially spherical aberration. Spherical IOL implantation resulted in an overall increase in spherical aberration across the field. Orthokeratology and LASIK reversed the direction of change in coma across the field. Orthokeratology corrected peripheral relative hypermetropia through correcting myopia in the central visual field. Theoretical ray tracing demonstrated that changes in aberrations due to orthokeratology and LASIK can be explained by the induced changes in radius of curvature and asphericity of the cornea. This investigation has shown that peripheral aberrations can be measured with reasonable accuracy with eye rotation relative to the instrument. Peripheral aberrations are affected by accommodation, myopia, age, orthokeratology, spherical intraocular lens implantation and laser in situ keratomileusis. These factors affect the magnitudes and patterns of most aberrations considerably (especially coma and spherical aberration) across the studied visual field. The changes in aberrations across the field may influence peripheral detection and motion perception. However, further research is required to investigate how the changes in aberrations influence peripheral detection and motion perception and consequently peripheral vision task performance.
Resumo:
High density development has been seen as a contribution to sustainable development. However, a number of engineering issues play a crucial role in the sustainable construction of high rise buildings. Non linear deformation of concrete has an adverse impact on high-rise buildings with complex geometries, due to differential axial shortening. These adverse effects are caused by time dependent behaviour resulting in volume change known as ‘shrinkage’, ‘creep’ and ‘elastic’ deformation. These three phenomena govern the behaviour and performance of all concrete elements, during and after construction. Reinforcement content, variable concrete modulus, volume to surface area ratio of the elements, environmental conditions, and construction quality and sequence influence on the performance of concrete elements and differential axial shortening will occur in all structural systems. Its detrimental effects escalate with increasing height and non vertical load paths resulting from geometric complexity. The magnitude of these effects has a significant impact on building envelopes, building services, secondary systems, and lifetime serviceability and performance. Analytical and test procedures available to quantify the magnitude of these effects are limited to a very few parameters and are not adequately rigorous to capture the complexity of true time dependent material response. With this in mind, a research project has been undertaken to develop an accurate numerical procedure to quantify the differential axial shortening of structural elements. The procedure has been successfully applied to quantify the differential axial shortening of a high rise building, and the important capabilities available in the procedure have been discussed. A new practical concept, based on the variation of vibration characteristic of structure during and after construction and used to quantify the axial shortening and assess the performance of structure, is presented.
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.
Resumo:
Differential axial shortening in vertical members of reinforced concrete high-rise buildings occurs due to shrinkage, creep and elastic shortening, which are time dependent effects of concrete. This has to be quantified in order to make adequate provisions and mitigate its adverse effects. This paper presents a novel procedure for quantifying the axial shortening of vertical members using the variations in vibration characteristics of the structure, in lieu of using gauges which can pose problems in use during and after the construction. This procedure is based on the changes in the modal flexiblity matrix which is expressed as a function of the mode shapes and the reciprocal of the natural frequencies. This paper will present the development of this novel procedure.
Resumo:
Controlling differential axial shortening in vertical load bearing concrete elements is a major concern for new generation tall buildings with complex geometries and mechanisms. Quantification of axial shortening using gauges to verify the pre-estimated numerical values used at the design stage is a well established method. This method makes adequate provision to mitigate the adverse effects during the construction. However, this method is becoming increasingly unusable due to its drawbacks. This highlights the need a novel method to quantify the axial shortening using ambient measurements. This paper will first brief introduce the method and then illustrate its application to a high-rise building with two outrigger and belt systems. Moreover, this procedure can be used as a health or performance monitoring tool of the building structure, both during and after construction.