8 resultados para automation, palynology, pollen counting, pollen identification, protocols
em Queensland University of Technology - ePrints Archive
Resumo:
We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.
Resumo:
We describe an investigation into how Massey University's Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University's pollen reference collection (2890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set. In addition to the Classifynder's native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples. © 2013 AIP Publishing LLC.
Resumo:
Recently, a convex hull-based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. While some rudimentary security issues of this protocol have been discussed, a comprehensive security analysis has been lacking. In this paper, we analyze the security of this convex hull-based protocol. In particular, we show two probabilistic attacks that reveal the user’s secret after the observation of only a handful of authentication sessions. These attacks can be efficiently implemented as their time and space complexities are considerably less than brute force attack. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values that cross the threshold of usability.
Resumo:
Recently a convex hull based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. In this paper we show two efficient probabilistic attacks on this protocol which reveal the user’s secret after the observation of only a handful of authentication sessions. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values which cross the threshold of usability.
Resumo:
We propose a new protocol providing cryptographically secure authentication to unaided humans against passive adversaries. We also propose a new generic passive attack on human identification protocols. The attack is an application of Coppersmith’s baby-step giant-step algorithm on human identification protcols. Under this attack, the achievable security of some of the best candidates for human identification protocols in the literature is further reduced. We show that our protocol preserves similar usability while achieves better security than these protocols. A comprehensive security analysis is provided which suggests parameters guaranteeing desired levels of security.
Resumo:
The SER spectra of riboflavin and FAD are identical and are resonance enhanced at 514 or 532 nm. Signals from FAD/ riboflavin dominated SER spectra whenever these compounds were present with proteins or bacteria. SER spectra of very different bacteria such as Pseudomonas. aeruginosa, Bacillu. subtilis and Geobacillus. stearothermophilus were dominated by signals from FAD, even when these bacteria were added to a preformed colloid. The SERS signal of FAD is greatly reduced at 785 nm, and SER spectra of bacteria excited at 785 nm are quite different than those collected at 514 or 532 nm. This supports the assignment of the peaks in the 514 nm SER spectra of bacteria to FAD rather to amino acids or N-acetylglucosamine. The SER spectra of certain mixes of adenine and FAD showed similar changes to those of bacteria when the excitation was changed from 514/532 nm to 785 nm. The ratio of colloid: bacteria was of critical important for obtaining good SER spectra, and the addition of sodium sulfate was also beneficial. Removal of EPS from bacteria before analysis facilitated interaction with the silver surface, and may be a useful step to include in identification protocols.
Resumo:
Gifted students who have a reading disability have learning characteristics that set them apart from their peers. The ability to read impacts upon all areas of the formal curriculum in which print-based texts are common. Therefore, the full intellectual development of gifted students with a reading disability can be repressed because their access to learning opportunities is reduced. When the different learning needs caused by concomitant giftedness and reading disability are not met, it can have serious implications for both academic achievement and the social-emotional wellbeing of these students. In order to develop a deeper understanding of this vulnerable group of students, this study investigated the learning characteristics of gifted students with a reading disability. Furthermore, it investigated how the learning characteristics of these students impact upon their lived experiences. Since achievement and motivation have been shown to be closely linked to self-efficacy, self-efficacy theory underpinned the conceptual framework of the study. The study used a descriptive case study approach to document the lived experiences of gifted students with a reading disability. Nine participants aged between 11 and 18, who were formally identified as gifted with a reading disability, took part in the study. Data sources in the case study database included: cognitive assessments, such as WISC assessments, Stanford Binet 5, or the Raven's Standard Progressive Matrices; the WIAT II reading assessment; the Reader Self-Perception Scale; document reviews; parent and teacher checklists designed to gain information about the students' learning characteristics; and semi-structured interviews with students. The study showed that gifted students with a reading disability display a complex profile of learning strengths and weaknesses. As a result, they face a daily struggle of trying to reconcile the confusion of being able to complete some tasks to a high level, while struggling to read. The study sheds light on the myriad of issues faced by the students at school. It revealed that when the particular learning characteristics and needs of gifted students with a reading disability are recognised and met, these students can experience academic success, and avoid the serious social-emotional complications cited in previous studies. Indeed, rather than suffering from depression, disengagement from learning, and demotivation, these students were described as resilient, independent, determined, goal oriented and motivated to learn and persevere. Notably, the students in the study had developed effective coping strategies for dealing with the daily challenges they faced. These strategies are outlined in the thesis together with the advice students offered for helping other gifted students with a reading disability to succeed. Their advice is significant for all teachers who wish to nurture the potential of those students who face the challenge of being gifted with a reading disability, and for the parents of these students. This research advances knowledge pertaining to the theory of self-efficacy, and self-efficacy in reading specifically, by showing that although gifted students with a reading disability have low self-efficacy, the level is not the same for all aspects of reading. Furthermore, despite low self-efficacy in reading these students remained motivated. The study also enhances existing knowledge in the areas of gifted education and special education because it documents the lived experience of gifted students with a specific learning disability in reading from the students' perspectives. Based on a synthesis of the literature and research findings, an Inclusive Pathway Model is proposed that describes a framework to support gifted students with a reading disability so that they might achieve, and remain socially and emotionally well-adjusted. The study highlights the importance of clear identification protocols (such as the use of a range of assessment sources, discussions with students and parents, and an awareness of the characteristics of gifted students with a reading disability) and support mechanisms for assisting students (for example, differentiated reading instruction and the use of assistive technology).
Resumo:
The sum of k mins protocol was proposed by Hopper and Blum as a protocol for secure human identification. The goal of the protocol is to let an unaided human securely authenticate to a remote server. The main ingredient of the protocol is the sum of k mins problem. The difficulty of solving this problem determines the security of the protocol. In this paper, we show that the sum of k mins problem is NP-Complete and W[1]-Hard. This latter notion relates to fixed parameter intractability. We also discuss the use of the sum of k mins protocol in resource-constrained devices.