221 resultados para automated diagnosis
em Queensland University of Technology - ePrints Archive
Resumo:
Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
Resumo:
An automated melanoma diagnosis system, the so-called Skin Polar-probe, was developed to improve the chances of early detection of skin cancers and help save the lives of melanoma victims. The system will offer unique benefits to aid early detection of melanoma - the key to reducing deaths caused by this cancer.
Resumo:
This paper presents an experimental study on the vibration signal patterns associated with a simulated piston slap test of a four-cylinder diesel engine. It is found that a simulated worn-off piston results in an increase in vibration RMS peak amplitudes associated with the major mechanical events of the corresponding cylinder (i.e., inlet and exhaust valve closing and combustion of Cylinder 1). This then led to an increase of overall vibration amplitude of the time domain statistical features such as RMS, Crest Factor, Skewness and Kurtosis in all loading conditions. The simulated worn-off piston not only increased the impact amplitude of piston slap during the engine combustion, it also produced a distinct impulse response during the air induction stroke of the cylinder attributing to an increase of lateral impact force as a result of piston reciprocating motion and the increased clearance between the worn-off piston and the cylinder. The unique signal patterns of piston slap disclosed in this paper can be utilized to assist in the development of condition monitoring tools for automated diagnosis of similar diesel engine faults in practical applications.
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.
Resumo:
In Chapter 10, Adam and Dougherty describe the application of medical image processing to the assessment and treatment of spinal deformity, with a focus on the surgical treatment of idiopathic scoliosis. The natural history of spinal deformity and current approaches to surgical and non-surgical treatment are briefly described, followed by an overview of current clinically used imaging modalities. The key metrics currently used to assess the severity and progression of spinal deformities from medical images are presented, followed by a discussion of the errors and uncertainties involved in manual measurements. This provides the context for an analysis of automated and semi-automated image processing approaches to measure spinal curve shape and severity in two and three dimensions.
Resumo:
The aim of this research is to report initial experimental results and evaluation of a clinician-driven automated method that can address the issue of misdiagnosis from unstructured radiology reports. Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to disperse information resources and vast amounts of manual processing of unstructured information, a point-of-care accurate diagnosis is often difficult. A rule-based method that considers the occurrence of clinician specified keywords related to radiological findings was developed to identify limb abnormalities, such as fractures. A dataset containing 99 narrative reports of radiological findings was sourced from a tertiary hospital. The rule-based method achieved an F-measure of 0.80 and an accuracy of 0.80. While our method achieves promising performance, a number of avenues for improvement were identified using advanced natural language processing (NLP) techniques.
Resumo:
Background Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to dispersed information resources and a vast amount of manual processing of unstructured information, accurate point-of-care diagnosis is often difficult. Aims The aim of this research is to report initial experimental evaluation of a clinician-informed automated method for the issue of initial misdiagnoses associated with delayed receipt of unstructured radiology reports. Method A method was developed that resembles clinical reasoning for identifying limb abnormalities. The method consists of a gazetteer of keywords related to radiological findings; the method classifies an X-ray report as abnormal if it contains evidence contained in the gazetteer. A set of 99 narrative reports of radiological findings was sourced from a tertiary hospital. Reports were manually assessed by two clinicians and discrepancies were validated by a third expert ED clinician; the final manual classification generated by the expert ED clinician was used as ground truth to empirically evaluate the approach. Results The automated method that attempts to individuate limb abnormalities by searching for keywords expressed by clinicians achieved an F-measure of 0.80 and an accuracy of 0.80. Conclusion While the automated clinician-driven method achieved promising performances, a number of avenues for improvement were identified using advanced natural language processing (NLP) and machine learning techniques.
Resumo:
Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.
Resumo:
OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard. RESEARCH DESIGN AND METHODS Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy. RESULTS Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14). CONCLUSIONS This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.
Resumo:
Timely feedback is a vital component in the learning process. It is especially important for beginner students in Information Technology since many have not yet formed an effective internal model of a computer that they can use to construct viable knowledge. Research has shown that learning efficiency is increased if immediate feedback is provided for students. Automatic analysis of student programs has the potential to provide immediate feedback for students and to assist teaching staff in the marking process. This paper describes a “fill in the gap” programming analysis framework which tests students’ solutions and gives feedback on their correctness, detects logic errors and provides hints on how to fix these errors. Currently, the framework is being used with the Environment for Learning to Programming (ELP) system at Queensland University of Technology (QUT); however, the framework can be integrated into any existing online learning environment or programming Integrated Development Environment (IDE)