5 resultados para auger

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle collections from the stratosphere via either the JSC Curatorial Program or the U2 Program (NASA Ames) occur between 16km and 19km altitude and are usually part of ongoing experiments to measure parameters related to the aerosol layer. Fine-grained aerosols (<0.1µm) occur in the stratosphere up to 35km altitude and are concentrated between 15km and 25km altitude[1]. All interplanetary dust particles (IDP's) from these stratospheric collections must pass through this aerosol layer before reaching the collection altitude. The major compounds in this aerosol layer are sulfur rich particulates (<0.1µm) and gases and include H2S04, OCS, S02 and CS2 [2].In order to assess possible surface reactions of interplanetary dust particles (IDP's) with ambient aerosols in the stratosphere, we have initiated a Surface Auger Microprobe (SAM) and electron microscope study of selected particles from the JSC Cosmic Dust Collection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter the core-core-valence Auger transitions of an atomic impurity, both in bulk or adsorbed on a jellium-like surface, are computed within a DFT framework. The Auger rates calculated by the Fermi golden rule are compared with those determined by an approximate and simpler expression. This is based on the local density of states (LDOS) with a core hole present, in a region around the impurity nucleus. Different atoms, Na and Mg, solids, Al and Ag, and several impurity locations are considered. We obtain an excellent agreement between KL1V and KL23V rates worked out with the two approaches. The radius of the sphere in which we calculate the LDOS is the relevant parameter of the simpler approach. Its value only depends on the atomic species regardless of the location of the impurity and the type of substrate. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface chemistries of three particulate samples collected from the lower stratosphere have been determined using a Scanning Auger Microprobe (SAM). These samples are typical of the most abundant natural and anthropogenic particles observed within the stratosphere in the >2µm diameter size fraction. Successive sputtering and analysis below the first few adsorbed monolayers of all particles shows the presence of a thin <150A) sulphur layer. These sulphur regions probably formed by surface reaction of sulphur-rich aerosols with each particle within the stratosphere. Settling rate calculations show that a typical sphere (10µm diameter) may reside within the aerosol layer for ~20 days and thus, provide a qualitative guide to surface sulphur reaction rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-quality epitaxial YBa2Cu3O7-δ (YBCO) thin films were achieved by a modified off-axis sputtering technique with high deposition rates (3.3 nm/min). The film quality and the deposition rate depended crucially on the target-to-substrate separation. Epitaxial YBCO/NdGaO3(NGO)/YBCO trilayers were successfully grown onto SrTiO3, Y-ZrO2, and LaAlO3 substrates by dc and rf sputtering. The epitaxial relations were found to be [001] YBCO//[001]NGO, [100]YBCO, or [010] YBCO//[110]NGO and [001]YBCO//[110] NGO, [100]YBCO, or [010]YBCO//[001] NGO, where the latter orientation relationship was dominating. Subsequent top YBCO layers grew c axis oriented independently of the two epitaxial orientations of the NGO. The orientation relationships between YBCO and NGO were the same. Auger electron depth profiles and transmission electron microscopy indicated that the interdiffusion at the interface between the YBCO and NGO layers was not strong even at 740°C. The superconducting transition temperatures of the top and bottom YBCO layers were about the same as that of YBCO single layers, i.e., 87-90 K. Scanning electron microscopy of the surface morphologies of the YBCO and the NGO showed that a smaller substrate-target distance resulted in smoother films.