57 resultados para astigmatism
em Queensland University of Technology - ePrints Archive
Resumo:
We investigated the limits at which blur due to defocus, crossed-cylinder astigmatism, and trefoil became noticeable, troublesome or objectionable. Black letter targets (0.1, 0.35 and 0.6 logMAR) were presented on white backgrounds. Subjects were cyclopleged and had effectively 5 mm pupils. Blur was induced with a deformable, adaptive-optics mirror operating under open-loop conditions. Mean defocus blur limits of six subjects with uncorrected intrinsic higher-order ocular aberrations ranged from 0.18 ± 0.08 D (noticeable blur criterion, 0.1 logMAR) to 1.01 ± 0.27 D (objectionable blur criterion, 0.6 logMAR. Crossed-cylinder astigmatic blur limits were approximately 90% of those for defocus, but with considerable meridional influences. In two of the subjects, the intrinsic aberrations of the eye were subsequently corrected before the defocus and astigmatic blur were added. This resulted in only minor reductions in their blur limits. When assessed with trefoil blur and corrected intrinsic ocular aberrations, the ratio of objectionable to noticeable blur limits in these two subjects was much higher for trefoil (3.5) than for defocus (2.5) and astigmatism (2.2).
Resumo:
Purpose The aim of this study is to assess the refractive and visual outcomes following cataract surgery and implantation of the AcrySof IQ Toric SN6AT2 intraolcular lens (IOL) (Alcon Laboratories, Inc) in patients with low corneal astigmatism. Materials and Methods A retrospective, consecutive, single surgeon series of ninety-eight eyes of 88 patients following cataract surgery and implantation of the AcrySof IQ Toric SN6AT2 IOL in eyes with low preoperative corneal astigmatism. Postoperative measurements were obtained at one month post surgery. Main outcome measures were monocular distance visual acuity and residual refractive astigmatism. Results The mean preoperative corneal astigmatic power vector (APV) was 0.38 ± 0.09 D. Following surgery and implantation of the toric IOL, mean postoperative refractive APV was 0.13 ± 0.10 D. Mean postoperative distance uncorrected visual acuity (UCVA) was 0.08 ± 0.09 logMAR. Postoperative spherical equivalent refraction (SER) resulted in a mean of - 0.23 ± 0.22 D, with 96% of eyes falling within 0.50 D of the target SER. Conclusions The AcrySof IQ Toric SN6AT2 IOL is a safe and effective option for eyes undergoing cataract surgery with low amounts of preoperative corneal astigmatism.
Resumo:
Purpose: Astigmatism is an important refractive condition in children. However, the functional impact of uncorrected astigmatism in this population is not well established, particularly with regard to academic performance. This study investigated the impact of simulated bilateral astigmatism on academic-related tasks before and after sustained near work in children. Methods: Twenty visually normal children (mean age: 10.8 ± 0.7 years; 6 males and 14 females) completed a range of standardised academic-related tests with and without 1.50 D of simulated bilateral astigmatism (with both academic-related tests and the visual condition administered in a randomised order). The simulated astigmatism was induced using a positive cylindrical lens while maintaining a plano spherical equivalent. Performance was assessed before and after 20 minutes of sustained near work, during two separate testing sessions. Academic-related measures included a standardised reading test (the Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (the Developmental Eye Movement test). Each participant was systematically assigned either with-the-rule (WTR, axis 180°) or against-the-rule (ATR, axis 90°) simulated astigmatism to evaluate the influence of axis orientation on any decrements in performance. Results: Reading, visual information processing and reading-related eye movement performance were all significantly impaired by both simulated bilateral astigmatism (p<0.001) and sustained near work (p<0.001), however, there was no significant interaction between these factors (p>0.05). Simulated astigmatism led to a reduction of between 5% and 12% in performance across the academic-related outcome measures, but there was no significant effect of the axis (WTR or ATR) of astigmatism (p>0.05). Conclusion: Simulated bilateral astigmatism impaired children’s performance on a range of academic–related outcome measures irrespective of the orientation of the astigmatism. These findings have implications for the clinical management of non-amblyogenic levels of astigmatism in relation to academic performance in children. Correction of low to moderate levels of astigmatism may improve the functional performance of children in the classroom.
Resumo:
Purpose: To provide a comprehensive overview of research examining the impact of astigmatism on clinical and functional measures of vision, the short and longer term adaptations to astigmatism that occur in the visual system, and the currently available clinical options for the management of patients with astigmatism. Recent findings: The presence of astigmatism can lead to substantial reductions in visual performance in a variety of clinical vision measures and functional visual tasks. Recent evidence demonstrates that astigmatic blur results in short-term adaptations in the visual system that appear to reduce the perceived impact of astigmatism on vision. In the longer term, uncorrected astigmatism in childhood can also significantly impact on visual development, resulting in amblyopia. Astigmatism is also associated with the development of spherical refractive errors. Although the clinical correction of small magnitudes of astigmatism is relatively straightforward, the precise, reliable correction of astigmatism (particularly high astigmatism) can be challenging. A wide variety of refractive corrections are now available for the patient with astigmatism, including spectacle, contact lens and surgical options. Conclusion: Astigmatism is one of the most common refractive errors managed in clinical ophthalmic practice. The significant visual and functional impacts of astigmatism emphasise the importance of its reliable clinical management. With continued improvements in ocular measurement techniques and developments in a range of different refractive correction technologies, the future promises the potential for more precise and comprehensive correction options for astigmatic patients.
Resumo:
Uncorrected refractive error, including astigmatism, is a leading cause of reversible visual impairment. While the ability to perform vision-related daily activities is reduced when people are not optimally corrected, only limited research has investigated the impact of uncorrected astigmatism. Given the capacity to perform vision-related daily activities involves integration of a range of visual and cognitive cues, this research examined the impact of simulated astigmatism on visual tasks that also involved cognitive input. The research also examined whether the higher levels of complexity inherent in Chinese characters makes them more susceptible to the effects of astigmatism. The effects of different powers of astigmatism, as well as astigmatism at different axes were investigated in order to determine the minimum level of astigmatism that resulted in a decrement in visual performance.
Resumo:
PURPOSE: To investigate how distance visual acuity in the presence of defocus and astigmatism is affected by age and whether aberration properties of young and older eyes can explain any differences. METHODS: Participants were 12 young adults (mean [±SD] age, 23 [±2] years) and 10 older adults (mean [±SD] age, 57 [±4] years). Cyclopleged right eyes were used with 4-mm effective pupil sizes. Thirteen blur conditions were used by adding five spherical lens conditions (-1.00 diopters [D], -0.50 D, plano/0.00 D, +0.50 D, and +1.00 D) and adding two cross-cylindrical lenses (+0.50 DS/-1.00 DC and +1.00 D/-2.00 DC, or 0.50 D and 1.00 D astigmatism) at four negative cylinder axes (45, 90, 135, and 180 degrees). Targets were single lines of high-contrast letters based on the Bailey-Lovie chart. Successively smaller lines were read until a participant could no longer read any of the letters correctly. Aberrations were measured with a COAS-HD Hartmann-Shack aberrometer. RESULTS: There were no significant differences between the two age groups. We estimated that 70 to 80 participants per group would be needed to show significant effects of the trend of greater visual acuity loss for the young group. Visual acuity loss for astigmatism was twice that for defocus of the same magnitude of blur strength (0.33 logMAR [logarithm of the minimum angle of resolution]/D compared with 0.18 logMAR/D), contrary to the geometric prediction of similar loss. CONCLUSIONS: Any age-related differences in visual acuity in the presence of defocus and astigmatism were swamped by interparticipant variation.
Resumo:
Background Wavefront-guided Laser-assisted in situ keratomileusis (LASIK) is a widespread and effective surgical treatment for myopia and astigmatic correction but whether it induces higher-order aberrations remains controversial. The study was designed to evaluate the changes in higher-order aberrations after wavefront-guided ablation with IntraLase femtosecond laser in moderate to high astigmatism. Methods Twenty-three eyes of 15 patients with moderate to high astigmatism (mean cylinder, −3.22 ± 0.59 dioptres) aged between 19 and 35 years (mean age, 25.6 ± 4.9 years) were included in this prospective study. Subjects with cylinder ≥ 1.5 and ≤2.75 D were classified as moderate astigmatism while high astigmatism was ≥3.00 D. All patients underwent a femtosecond laser–enabled (150-kHz IntraLase iFS; Abbott Medical Optics Inc) wavefront-guided ablation. Uncorrected (UDVA), corrected (CDVA) distance visual acuity in logMAR, keratometry, central corneal thickness (CCT) and higher-order aberrations (HOAs) over a 6 mm pupil, were assessed before and 6 months, postoperatively. The relationship between postoperative change in HOA and preoperative mean spherical equivalent refraction, mean astigmatism, and postoperative CCT were tested. Results At the last follow-up, the mean UDVA was increased (P < 0.0001) but CDVA remained unchanged (P = 0.48) and no eyes lost ≥2 lines of CDVA. Mean spherical equivalent refraction was reduced (P < 0.0001) and was within ±0.50 D range in 61 % of eyes. The average corneal curvature was flatter by 4 D and CCT was reduced by 83 μm (P < 0.0001, for all), postoperatively. Coma aberrations remained unchanged (P = 0.07) while the change in trefoil (P = 0.047) postoperatively, was not clinically significant. The 4th order HOAs (spherical aberration and secondary astigmatism) and the HOA root mean square (RMS) increased from −0.18 ± 0.07 μm, 0.04 ± 0.03 μm and 0.47 ± 0.11 μm, preoperatively, to 0.33 ± 0.19 μm (P = 0.004), 0.21 ± 0.09 μm (P < 0.0001) and 0.77 ± 0.27 μm (P < 0.0001), six months postoperatively. The change in spherical aberration after the procedure increased with an increase in the degree of preoperative myopia. Conclusions Wavefront-guided IntraLASIK offers a safe and effective option for vision and visual function improvement in astigmatism. Although, reduction of HOA is possible in a few eyes, spherical-like aberrations are increased in majority of the treated eyes.
Resumo:
Suggestions that peripheral imagery may affect the development of refractive error have led to interest in the variation in refraction and aberration across the visual field. It is shown that, if the optical system of the eye is rotationally symmetric about an optical axis which does not coincide with the visual axis, measurements of refraction and aberration made along the horizontal and vertical meridians of the visual field will show asymmetry about the visual axis. The departures from symmetry are modelled for second-order aberrations, refractive components and third-order coma. These theoretical results are compared with practical measurements from the literature. The experimental data support the concept that departures from symmetry about the visual axis in the measurements of crossed-cylinder astigmatism J45 and J180 are largely explicable in terms of a decentred optical axis. Measurements of the mean sphere M suggest, however, that the retinal curvature must differ in the horizontal and vertical meridians.
Resumo:
We extended an earlier study (Vision Research, 45, 1967–1974, 2005) in which we investigated limits at which induced blur of letter targets becomes noticeable, troublesome and objectionable. Here we used a deformable adaptive optics mirror to vary spherical defocus for conditions of a white background with correction of astigmatism; a white background with reduction of all aberrations other than defocus; and a monochromatic background with reduction of all aberrations other than defocus. We used seven cyclopleged subjects, lines of three high-contrast letters as targets, 3–6 mm artificial pupils, and 0.1–0.6 logMAR letter sizes. Subjects used a method of adjustment to control the defocus component of the mirror to set the 'just noticeable', 'just troublesome' and 'just objectionable' defocus levels. For the white-no adaptive optics condition combined with 0.1 logMAR letter size, mean 'noticeable' blur limits were ±0.30, ±0.24 and ±0.23 D at 3, 4 and 6 mm pupils, respectively. White-adaptive optics and monochromatic-adaptive optics conditions reduced blur limits by 8% and 20%, respectively. Increasing pupil size from 3–6 mm decreased blur limits by 29%, and increasing letter size increased blur limits by 79%. Ratios of troublesome to noticeable, and of objectionable to noticeable, blur limits were 1.9 and 2.7 times, respectively. The study shows that the deformable mirror can be used to vary defocus in vision experiments. Overall, the results of noticeable, troublesome and objectionable blur agreed well with those of the previous study. Attempting to reduce higher-order aberrations or chromatic aberrations, reduced blur limits to only a small extent.
Resumo:
Purpose: To investigate associations between the diurnal variation in a range of corneal parameters, including anterior and posterior corneal topography, and regional corneal thickness. ----- Methods: Fifteen subjects had their corneas measured using a rotating Scheimpflug camera (Pentacam) every 3-7 hours over a 24-hour period. Anterior and posterior corneal axial curvature, pachymetry and anterior chamber depth were analysed. The best fitting corneal sphero-cylinder from the axial curvature, and the average corneal thickness for a series of different corneal regions were calculated. Intraocular pressure and axial length were also measured at each measurement session. Repeated measures ANOVA were used to investigate diurnal change in these parameters. Analysis of covariance was used to examine associations between the measured ocular parameters. ----- Results: Significant diurnal variation was found to occur in both the anterior and posterior corneal curvature and in the regional corneal thickness. Flattening of the anterior corneal best sphere was observed at the early morning measurement (p < 0.0001). The posterior cornea also underwent a significant steepening (p < 0.0001) and change in astigmatism 90/180° at this time. A significant swelling of the cornea (p < 0.0001) was also found to occur immediately after waking. Highly significant associations were found between the diurnal variation in corneal thickness and the changes in corneal curvature. ----- Conclusions: Significant diurnal variation occurs in the regional thickness and the shape of the anterior and posterior cornea. The largest changes in the cornea were typically evident upon waking. The observed non-uniform regional corneal thickness changes resulted in a steepening of the posterior cornea, and a flattening of the anterior cornea to occur at this time.
Resumo:
Aberrations affect image quality of the eye away from the line of sight as well as along it. High amounts of lower order aberrations are found in the peripheral visual field and higher order aberrations change away from the centre of the visual field. Peripheral resolution is poorer than that in central vision, but peripheral vision is important for movement and detection tasks (for example driving) which are adversely affected by poor peripheral image quality. Any physiological process or intervention that affects axial image quality will affect peripheral image quality as well. The aim of this study was to investigate the effects of accommodation, myopia, age, and refractive interventions of orthokeratology, laser in situ keratomileusis and intraocular lens implantation on the peripheral aberrations of the eye. This is the first systematic investigation of peripheral aberrations in a variety of subject groups. Peripheral aberrations can be measured either by rotating a measuring instrument relative to the eye or rotating the eye relative to the instrument. I used the latter as it is much easier to do. To rule out effects of eye rotation on peripheral aberrations, I investigated the effects of eye rotation on axial and peripheral cycloplegic refraction using an open field autorefractor. For axial refraction, the subjects fixated at a target straight ahead, while their heads were rotated by ±30º with a compensatory eye rotation to view the target. For peripheral refraction, the subjects rotated their eyes to fixate on targets out to ±34° along the horizontal visual field, followed by measurements in which they rotated their heads such that the eyes stayed in the primary position relative to the head while fixating at the peripheral targets. Oblique viewing did not affect axial or peripheral refraction. Therefore it is not critical, within the range of viewing angles studied, if axial and peripheral refractions are measured with rotation of the eye relative to the instrument or rotation of the instrument relative to the eye. Peripheral aberrations were measured using a commercial Hartmann-Shack aberrometer. A number of hardware and software changes were made. The 1.4 mm range limiting aperture was replaced by a larger aperture (2.5 mm) to ensure all the light from peripheral parts of the pupil reached the instrument detector even when aberrations were high such as those occur in peripheral vision. The power of the super luminescent diode source was increased to improve detection of spots passing through the peripheral pupil. A beam splitter was placed between the subjects and the aberrometer, through which they viewed an array of targets on a wall or projected on a screen in a 6 row x 7 column matrix of points covering a visual field of 42 x 32. In peripheral vision, the pupil of the eye appears elliptical rather than circular; data were analysed off-line using custom software to determine peripheral aberrations. All analyses in the study were conducted for 5.0 mm pupils. Influence of accommodation on peripheral aberrations was investigated in young emmetropic subjects by presenting fixation targets at 25 cm and 3 m (4.0 D and 0.3 D accommodative demands, respectively). Increase in accommodation did not affect the patterns of any aberrations across the field, but there was overall negative shift in spherical aberration across the visual field of 0.10 ± 0.01m. Subsequent studies were conducted with the targets at a 1.2 m distance. Young emmetropes, young myopes and older emmetropes exhibited similar patterns of astigmatism and coma across the visual field. However, the rate of change of coma across the field was higher in young myopes than young emmetropes and was highest in older emmetropes amongst the three groups. Spherical aberration showed an overall decrease in myopes and increase in older emmetropes across the field, as compared to young emmetropes. Orthokeratology, spherical IOL implantation and LASIK altered peripheral higher order aberrations considerably, especially spherical aberration. Spherical IOL implantation resulted in an overall increase in spherical aberration across the field. Orthokeratology and LASIK reversed the direction of change in coma across the field. Orthokeratology corrected peripheral relative hypermetropia through correcting myopia in the central visual field. Theoretical ray tracing demonstrated that changes in aberrations due to orthokeratology and LASIK can be explained by the induced changes in radius of curvature and asphericity of the cornea. This investigation has shown that peripheral aberrations can be measured with reasonable accuracy with eye rotation relative to the instrument. Peripheral aberrations are affected by accommodation, myopia, age, orthokeratology, spherical intraocular lens implantation and laser in situ keratomileusis. These factors affect the magnitudes and patterns of most aberrations considerably (especially coma and spherical aberration) across the studied visual field. The changes in aberrations across the field may influence peripheral detection and motion perception. However, further research is required to investigate how the changes in aberrations influence peripheral detection and motion perception and consequently peripheral vision task performance.
Resumo:
Small long wavelength lights (≤ 1’ arc) change colour appearance with positive defocus, appearing yellow or white. I investigated influences of longitudinal chromatic aberration and monochromatic aberrations on colour appearance of small narrow band lights. Seven cyclopleged participants viewed a small light (1’ arc diameter, λmax range 510 - 628 nm) centred within a 4.6’ black annulus and surrounded by a uniform white field under photopic light levels. An optical trombone varied focus. Participants were required to vary the focus by moving the optical trombone in either positive or negative direction and report when they noticed a change in appearance of the defocused narrow band light. Longitudinal chromatic aberration was controlled using a Powell achromatizing lens and its doublet and triplet components that neutralized, doubled and reversed the eye’s chromatic aberration, respectively. Changes in colour appearance for a 628 nm light occurred without any lens at +0.5 ± 0.2D defocus and with the doublet at +0.6 ± 0.2 D. The achromatizing lens did not affect appearance and the phenomenon was evident with the triplet for negative defocus (-0.5 ± 0.3 D). Adaptive optics correction of astigmatism and higher order monochromatic aberration did not affect magnitude significantly. Colour changes occurred despite a range of participant L/M cone ratios. Direction of change in colour appearance was reversed for short compared to long wavelengths. We conclude that longitudinal chromatic aberrations, but not monochromatic aberrations, are involved in changing appearance of small lights with defocus. Additional neuronal mechanisms that may contribute to the colour changes are considered.
Resumo:
The refractive error of a human eye varies across the pupil and therefore may be treated as a random variable. The probability distribution of this random variable provides a means for assessing the main refractive properties of the eye without the necessity of traditional functional representation of wavefront aberrations. To demonstrate this approach, the statistical properties of refractive error maps are investigated. Closed-form expressions are derived for the probability density function (PDF) and its statistical moments for the general case of rotationally-symmetric aberrations. A closed-form expression for a PDF for a general non-rotationally symmetric wavefront aberration is difficult to derive. However, for specific cases, such as astigmatism, a closed-form expression of the PDF can be obtained. Further, interpretation of the distribution of the refractive error map as well as its moments is provided for a range of wavefront aberrations measured in real eyes. These are evaluated using a kernel density and sample moments estimators. It is concluded that the refractive error domain allows non-functional analysis of wavefront aberrations based on simple statistics in the form of its sample moments. Clinicians may find this approach to wavefront analysis easier to interpret due to the clinical familiarity and intuitive appeal of refractive error maps.
Resumo:
Purpose: Small red lights (one minute of arc or less) change colour appearance with positive defocus. We investigated the influence of longitudinal chromatic aberration and monochromatic aberrations on the colour appearance of small narrow band lights. Methods: Seven cyclopleged, trichromatic observers viewed a small light (one minute of arc, λmax = 510, 532, 550, 589, 620, 628 nm, approximately 19 per cent Weber contrast) centred within a black annulus (4.5 minutes of arc) and surrounded by a uniform white field (2,170 cd/m2). Pupil size was four millimetres. An optical trombone varied focus. Longitudinal chromatic aberration was controlled with a two component Powell achromatising lens that neutralises the eye’s chromatic aberration; a doublet that doubles and a triplet that reverses the eye’s chromatic aberration. Astigmatism and higher order monochromatic aberrations were corrected using adaptive optics. Results: Observers reported a change in appearance of the small red light (628 nm) without the Powell lens at +0.49 ± 0.21 D defocus and with the doublet at +0.62 ± 0.16 D. Appearance did not alter with the Powell lens, and five of seven observers reported the phenomenon with the triplet for negative defocus (-0.80 ± 0.47 D). Correction of aberrations did not significantly affect the magnitude at which the appearance of the red light changed (+0.44 ± 0.18 D without correction; +0.46 ± 0.16 D with correction). The change in colour appearance with defocus extended to other wavelengths (λmax = 510 to 620 nm), with directions of effects being reversed for short wavelengths relative to long wavelengths. Conclusions: Longitudinal chromatic aberrations but not monochromatic aberrations are involved in changing the appearance of small lights with defocus.