15 resultados para apo-calmodulin
em Queensland University of Technology - ePrints Archive
Resumo:
The shift from 20th century mass communications media towards convergent media and Web 2.0 has raised the possibility of a renaissance of the public sphere, based around citizen journalism and participatory media culture. This paper will evaluate such claims both conceptually and empirically. At a conceptual level, it is noted that the question of whether media democratization is occurring depends in part upon how democracy is understood, with some critical differences in understandings of democracy, the public sphere and media citizenship. The empirical work in this paper draws upon various case studies of new developments in Australian media, including online- only newspapers, developments in public service media, and the rise of commercially based online alternative media. It is argued that participatory media culture is being expanded if understood in terms of media pluralism, but that implications for the public sphere depend in part upon how media democratization is defined.
Resumo:
This paper reports findings from a study of user behaviours and intentions towards online news and information in Australia, undertaken by the Queensland University of Technology Creative Industries Faculty and the Smart Services Cooperative Research Centre. It has used a literature review, online survey, focus groups and interviews to explore attitudes and behaviours towards online news and information. The literature review on consumer user of online media highlighted emerging technical opportunities, and flagged existing barriers to access experienced by consumers in the Australian digital media sector. The literature review highlighted multiple disconnects between consumer interests in online news and their ability to fulfil them. This presents an opportunity for news entities to appraise and resolve. Doing so may enhance their service offering, attract consumers and improve loyalty. These themes were further explored by the survey. The survey results revealed three typologies of user, described as ‘convenience’, ‘loyal’ and ‘customising’. Convenience users tend to access news by default, for example when they log out of email. Loyal users seek out a trusted brand such as mainstream news mastheads. Customising users tend to tailor news to their preferences, and be the first to use leading edge media. Respondents to the survey were then invited to participate in focus groups, which aimed to test the survey results. Consumer perceptions and attitudes are important factors in progression towards an information economy, because ultimately consumers are customers. By segmenting the online news market according to customer typology, media providers may identify new opportunities to attract and retain customers.
Resumo:
Recently it has been shown that the consumption of a diet high in saturated fat is associated with impaired insulin sensitivity and increased incidence of type 2 diabetes. In contrast, diets that are high in monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs), especially very long chain n-3 fatty acids (FAs), are protective against disease. However, the molecular mechanisms by which saturated FAs induce the insulin resistance and hyperglycaemia associated with metabolic syndrome and type 2 diabetes are not clearly defined. It is possible that saturated FAs may act through alternative mechanisms compared to MUFA and PUFA to regulate of hepatic gene expression and metabolism. It is proposed that, like MUFA and PUFA, saturated FAs regulate the transcription of target genes. To test this hypothesis, hepatic gene expression analysis was undertaken in a human hepatoma cell line, Huh-7, after exposure to the saturated FA, palmitate. These experiments showed that palmitate is an effective regulator of gene expression for a wide variety of genes. A total of 162 genes were differentially expressed in response to palmitate. These changes not only affected the expression of genes related to nutrient transport and metabolism, they also extend to other cellular functions including, cytoskeletal architecture, cell growth, protein synthesis and oxidative stress response. In addition, this thesis has shown that palmitate exposure altered the expression patterns of several genes that have previously been identified in the literature as markers of risk of disease development, including CVD, hypertension, obesity and type 2 diabetes. The altered gene expression patterns associated with an increased risk of disease include apolipoprotein-B100 (apo-B100), apo-CIII, plasminogen activator inhibitor 1, insulin-like growth factor-I and insulin-like growth factor binding protein 3. This thesis reports the first observation that palmitate directly signals in cultured human hepatocytes to regulate expression of genes involved in energy metabolism as well as other important genes. Prolonged exposure to long-chain saturated FAs reduces glucose phosphorylation and glycogen synthesis in the liver. Decreased glucose metabolism leads to elevated rates of lipolysis, resulting in increased release of free FAs. Free FAs have a negative effect on insulin action on the liver, which in turn results in increased gluconeogenesis and systemic dyslipidaemia. It has been postulated that disruption of glucose transport and insulin secretion by prolonged excessive FA availability might be a non-genetic factor that has contributed to the staggering rise in prevalence of type 2 diabetes. As glucokinase (GK) is a key regulatory enzyme of hepatic glucose metabolism, changes in its activity may alter flux through the glycolytic and de novo lipogenic pathways and result in hyperglycaemia and ultimately insulin resistance. This thesis investigated the effects of saturated FA on the promoter activity of the glycolytic enzyme, GK, and various transcription factors that may influence the regulation of GK gene expression. These experiments have shown that the saturated FA, palmitate, is capable of decreasing GK promoter activity. In addition, quantitative real-time PCR has shown that palmitate incubation may also regulate GK gene expression through a known FA sensitive transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), which upregulates GK transcription. To parallel the investigations into the mechanisms of FA molecular signalling, further studies of the effect of FAs on metabolic pathway flux were performed. Although certain FAs reduce SREBP-1c transcription in vitro, it is unclear whether this will result in decreased GK activity in vivo where positive effectors of SREBP-1c such as insulin are also present. Under these conditions, it is uncertain if the inhibitory effects of FAs would be overcome by insulin. The effects of a combination of FAs, insulin and glucose on glucose phosphorylation and metabolism in cultured primary rat hepatocytes at concentrations that mimic those in the portal circulation after a meal was examined. It was found that total GK activity was unaffected by an increased concentration of insulin, but palmitate and eicosapentaenoic acid significantly lowered total GK activity in the presence of insulin. Despite the fact that total GK enzyme activity was reduced in response to FA incubation, GK enzyme translocation from the inactive, nuclear bound, to active, cytoplasmic state was unaffected. Interestingly, none of the FAs tested inhibited glucose phosphorylation or the rate of glycolysis when insulin is present. These results suggest that in the presence of insulin the levels of the active, unbound cytoplasmic GK are sufficient to buffer a slight decrease in GK enzyme activity and decreased promoter activity caused by FA exposure. Although a high fat diet has been associated with impaired hepatic glucose metabolism, there is no evidence from this thesis that FAs themselves directly modulate flux through the glycolytic pathway in isolated primary hepatocytes when insulin is also present. Therefore, although FA affected expression of a wide range of genes, including GK, this did not affect glycolytic flux in the presence of insulin. However, it may be possible that a saturated FA-induced decrease in GK enzyme activity when combined with the onset of insulin resistance may promote the dys-regulation of glucose homeostasis and the subsequent development of hyperglycaemia, metabolic syndrome and type 2 diabetes.
Resumo:
In plant cells, myosin is believed to be the molecular motor responsible for actin-based motility processes such as cytoplasmic streaming and directed vesicle transport. In an effort to characterize plant myosin, a cDNA encoding a myosin heavy chain was isolated from Arabidopsis thaliana. The predicted product of the MYA1 gene is 173 kDa and is structurally similar to the class V myosins. It is composed of the highly-conserved NH2-terminal "head" domain, a putative calmodulin-binding "neck" domain an alpha-helical coiled-coil domain, and a COOH-terminal domain. Northern blot analysis shows that the Arabidopsis MYA1 gene is expressed in all the major plant tissues (flower, leaf, root, and stem). We suggest that the MYA1 myosin may be involved in a general intracellular transport process in plant cells.
Resumo:
The shift from 20th century mass communications media towards convergent media and Web 2.0 has raised the possibility of a renaissance of the public sphere, based around citizen journalism and participatory media culture. This paper will evaluate such claims both conceptually and empirically. At a conceptual level, it is noted that the question of whether media democratization is occurring depends in part upon how democracy is understood, with some critical differences in understandings of democracy, the public sphere and media citizenship. The empirical work in this paper draws upon various case studies of new developments in Australian media, including online- only newspapers, developments in public service media, and the rise of commercially based online alternative media. It is argued that participatory media culture is being expanded if understood in terms of media pluralism, but that implications for the public sphere depend in part upon how media democratization is defined.
Resumo:
Australia’s Arts and Entertainment Sector underpins cultural and social innovation, improves the quality of community life, is essential to maintaining our cities as world class attractors of talent and investment, and helps create ‘Brand Australia’ in the global marketplace of ideas (QUT Creative Industries Faculty 2010). The sector makes a significant contribution to the Australian economy. So what is the size and nature of this contribution? The Creative Industries Faculty at Queensland University of Technology recently conducted an exercise to source and present statistics in order to produce a data picture of Australia’s Arts and Entertainment Sector. The exercise involved gathering the latest statistics on broadcasting, new media, performing arts, and music composition, distribution and publishing as well as Australia’s performance in world markets.
Resumo:
Advances in information and communication technologies have brought about an information revolution, leading to fundamental changes in the way information is collected or generated, shared and distributed. The internet and digital technologies are re-shaping research, innovation and creativity. Economic research has highlighted the importance of information flows and the availability of information for access and re-use. Information is crucial to the efficiency of markets and enhanced information flows promote creativity, innovation and productivity. There is a rapidly expanding body of literature which supports the economic and social benefits of enabling access to and re-use of public sector information.1 (Note that a substantial research project associated with QUT’s Intellectual Property: Knowledge, Culture and Economy (IPKCE) Research Program is engaged in a comprehensive study and analysis of the literature on the economics of access to public sector information.)
Resumo:
We determined the effect of coingestion of caffeine (Caff) with carbohydrate (CHO) on rates of muscle glycogen resynthesis during recovery from exhaustive exercise in seven trained subjects who completed two experimental trials in a randomized, double-blind crossover design. The evening before an experiment subjects performed intermittent exhaustive cycling and then consumed a low-CHO meal. The next morning subjects rode until volitional fatigue. On completion of this ride subjects consumed either CHO [4 g/kg body mass (BM)] or the same amount of CHO + Caff (8 mg/kg BM) during 4 h of passive recovery. Muscle biopsies and blood samples were taken at regular intervals throughout recovery. Muscle glycogen levels were similar at exhaustion [?75 mmol/kg dry wt (dw)] and increased by a similar amount (?80%) after 1 h of recovery (133 ± 37.8 vs. 149 ± 48 mmol/kg dw for CHO and Caff, respectively). After 4 h of recovery Caff resulted in higher glycogen accumulation (313 ± 69 vs. 234 ± 50 mmol/kg dw, P < 0.001). Accordingly, the overall rate of resynthesis for the 4-h recovery period was 66% higher in Caff compared with CHO (57.7 ± 18.5 vs. 38.0 ± 7.7 mmol·kg dw-1·h-1, P < 0.05). After 1 h of recovery plasma Caff levels had increased to 31 ± 11 ?M (P < 0.001) and at the end of the recovery reached 77 ± 11 ?M (P < 0.001) with Caff. Phosphorylation of CaMKThr286 was similar after exercise and after 1 h of recovery, but after 4 h CaMKThr286 phosphorylation was higher in Caff than CHO (P < 0.05). Phosphorylation of AMP-activated protein kinase (AMPK)Thr172 and AktSer473 was similar for both treatments at all time points. We provide the first evidence that in trained subjects coingestion of large amounts of Caff (8 mg/kg BM) with CHO has an additive effect on rates of postexercise muscle glycogen accumulation compared with consumption of CHO alone.
Resumo:
Do different brains forming a specific memory allocate the same groups of neurons to encode it? One way to test this question is to map neurons encoding the same memory and quantitatively compare their locations across individual brains. In a previous study, we used this strategy to uncover a common topography of neurons in the dorsolateral amygdala (LAd) that expressed a learning-induced and plasticity-related kinase (p42/44 mitogen-activated protein kinase; pMAPK), following auditory Pavlovian fear conditioning. In this series of experiments, we extend our initial findings to ask to what extent this functional topography depends upon intrinsic neuronal structure. We first showed that the majority (87 %) of pMAPK expression in the lateral amygdala was restricted to principal-type neurons. Next, we verified a neuroanatomical reference point for amygdala alignment using in vivo magnetic resonance imaging and in vitro morphometrics. We then determined that the topography of neurons encoding auditory fear conditioning was not exclusively governed by principal neuron cytoarchitecture. These data suggest that functional patterning of neurons undergoing plasticity in the amygdala following Pavlovian fear conditioning is specific to memory formation itself. Further, the spatial allocation of activated neurons in the LAd was specific to cued (auditory), but not contextual, fear conditioning. Spatial analyses conducted at another coronal plane revealed another spatial map unique to fear conditioning, providing additional evidence that the functional topography of fear memory storing cells in the LAd is non-random and stable. Overall, these data provide evidence for a spatial organizing principle governing the functional allocation of fear memory in the amygdala.
Resumo:
Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database 1 and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK), the cyclin-dependent kinase, the mitogen-activated protein kinase (MAPK), and the protein kinase C (PKC) in the prefrontal cortex (PFC) of mood disorder patients died with suicide (N = 45) and without suicide (N = 38). We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (N = 46). The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (false discovery rate, FDR-adjusted p < 0.05, fold change >1.1). Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05). These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress associated neural plasticity, and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide
Resumo:
Urban planning policies in Australia presuppose apartments as the new dominant housing type, but much of what the market has delivered is criticised as over-development, and as being generic, poorly-designed, environmentally unsustainable and unaffordable. Policy responses to this problem typically focus on planning regulation and construction costs as the primary issues needing to be addressed in order to increase the supply of quality, affordable apartment housing. In contrast, this paper uses Ball’s (1983) ‘structures of provision’ approach to outline the key processes informing apartment development and identifies a substantial gap in critical understanding of how apartments are developed in Australia. This reveals economic problems not typically considered by policymakers. Using mainstream economic analysis to review the market itself, the authors found high search costs, demand risk, problems with exchange, and lack of competition present key barriers to achieving greater affordability and limit the extent to which ‘speculative’ developers can respond to the preferences of would be owner-occupiers of apartments. The existing development model, which is reliant on capturing uplift in site value, suits investors seeking rental yields in the first instance and capital gains in the second instance, and actively encourages housing price inflation. This is exacerbated by lack of density restrictions, such as have existed in inner Melbourne for many years, which permits greater yields on redevelopment sites. The price of land in the vicinity of such redevelopment sites is pushed up as landholders' expectation of future yield is raised. All too frequently existing redevelopment sites go back onto the market as vendors seek to capture the uplift in site value and exit the project in a risk free manner...
Resumo:
Periodontal inflammation can inhibit cell differentiation of periodontal ligament cells (PDLCs), resulting in decreased bone/cementum regeneration ability. The Wnt signaling pathway, including canonical Wnt/β-catenin signaling and noncanonical Wnt/Ca2+ signaling, plays essential roles in cell proliferation and differentiation during tooth development. However, little is still known whether noncanonical Wnt/Ca2+ signaling cascade could regulate cementogenic/osteogenic differentiation capability of PDLCs within an inflammatory environment. Therefore, in this study, human PDLCs (hPDLCs) and their cementogenic differentiation potential were investigated in the presence of cytokines. The data demonstrated that both cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) inhibited cell proliferation, relative alkaline phosphatase activity, bone/cementum-related gene/protein expression, and canonical Wnt pathway-related gene/protein expression in hPDLCs. Interestingly, both cytokines upregulated the noncanonical Wnt/Ca2+ signaling-related gene and protein expression in hPDLCs. When the Wnt/Ca2+ pathway was blocked by Ca2+/calmodulin-dependent protein kinase II inhibitor KN93, even in the presence of IL-6 and TNF-α, cementogenesis could be stimulated in hPDLCs. Our data indicate that the Wnt/Ca2+ pathway plays an inhibitory role on PDLC cementogenic differentiation in inflammatory microenvironments. Therefore, targeting the Wnt/Ca2+ pathway may provide a novel therapeutic approach to improve periodontal regeneration for periodontal diseases.
Resumo:
The objective of this research project was to consider the social impact of sport and physical activity on the lives of Indigenous Australians and their communities. There has been strong research interest in the links between sport and recreation programs and various health and social outcomes and a well-established body of literature exists on the use of sport to address social issues in mainstream society (A Thomson, Darcy and Pearce 2010). The consensus is that physical activity is an important contributor to health for all people (Nelson, Abbott and Macdonald 2010). While there is strong research interest, what remains unclear is the value and impact of sport and physical activity on Indigenous communities (Cairnduff 2001). Nelson (2009) drawing on the work of Jonas and Langton (1994) indicates that an ‘Aboriginal person is a descendant of an Indigenous inhabitant of Australia, identifi es as an Aboriginal, and is recognised as Aboriginal by members of the community in which he or she lives’ (p. 97). Even this defi nition has the potential to be politically charged. At a general level, the collective terms ‘Indigenous’ (capitalised) and ‘Aboriginal and Torres Strait Islander’ people (title capitalised) appear to be broadly acceptable terms. Indigenous groups cannot be considered to be homogenous as there is much diversity between and within groups (Nelson et al. 2010; Parker et al. 2006). It is therefore important this report is not viewed as taking an essentialist view of who Indigenous people are and how they develop. Rather, this paper attempts to describe and discuss the experiences of some individuals and their communities in site-specifi c surfi ng programs.
Resumo:
The detailed molecular mechanisms underlying the regulation of sleep duration in mammals are still elusive. To address this challenge, we constructed a simple computational model, which recapitulates the electrophysiological characteristics of the slow-wave sleep and awake states. Comprehensive bifurcation analysis predicted that a Ca2+-dependent hyperpolarization pathway may play a role in slow-wave sleep and hence in the regulation of sleep duration. To experimentally validate the prediction, we generate and analyze 21 KO mice. Here we found that impaired Ca2+-dependent K+ channels (Kcnn2 and Kcnn3), voltage-gated Ca2+ channels (Cacna1g and Cacna1h), or Ca2+/calmodulin-dependent kinases (Camk2a and Camk2b) decrease sleep duration, while impaired plasma membrane Ca2+ ATPase (Atp2b3) increases sleep duration. Pharmacological intervention and whole-brain imaging validated that impaired NMDA receptors reduce sleep duration and directly increase the excitability of cells. Based on these results, we propose a hypothesis that a Ca2+-dependent hyperpolarization pathway underlies the regulation of sleep duration in mammals.