107 resultados para anteroinferior portal

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maps have been published on the world wide web since its inception (Cartwright, 1999) and are still accessed and viewed by millions of users today (Peterson, 2003). While early webbased GIS products lacked a complete set of cartographic capabilities, the functionality within such systems has significantly increased over recent years. Functionalities once found only in desktop GIS products are now available in web-based GIS applications, for example, data entry, basic editing, and analysis. Applications based on web-GIS are becoming more widespread and the web-based GIS environment is replacing the traditional desktop GIS platforms in many organizations. Therefore, development of a new cartographic method for web-based GIS is vital. The broad aim of this project is to examine and discuss the challenges and opportunities of innovative cartography methods for web-based GIS platforms. The work introduces a recently developed cartographic methodology, which is based on a web-based GIS portal by the Survey of Israel (SOI). The work discusses the prospects and constraints of such methods in improving web-GIS interfaces and usability for the end user. The work also tables the preliminary findings of the initial implementation of the web-based GIS cartographic method within the portal of the Survey of Israel, as well as the applicability of those methods elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc. The geometric and dosimetric accuracy of CTCombine’s output has been assessed by simulating simple and complex treatments applied to a rotated planar phantom and a rotated humanoid phantom and comparing the resulting virtual EPID images with the images acquired using experimental measurements and independent simulations of equivalent phantoms. It is expected that CTCombine will be useful for Monte Carlo studies of EPID dosimetry as well as other EPID imaging applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the delivery and portal imaging of one square-field and one conformal radiotherapy treatment was simulated using the Monte Carlo codes BEAMnrc and DOSXYZnrc. The treatment fields were delivered to a humanoid phantom from different angles by a 6 MV photon beam linear accelerator, with an amorphous-silicon electronic portal imaging device (a-Si EPID) used to provide images of the phantom generated by each field. The virtual phantom preparation code CTCombine was used to combine a computed-tomography-derived model of the irradiated phantom with a simple, rectilinear model of the a-Si EPID, at each beam angle used in the treatment. Comparison of the resulting experimental and simulated a-Si EPID images showed good agreement, within \[gamma](3%, 3 mm), indicating that this method may be useful in providing accurate Monte Carlo predictions of clinical a-Si EPID images, for use in the verification of complex radiotherapy treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collaborative question answering (cQA) portals such as Yahoo! Answers allow users as askers or answer authors to communicate, and exchange information through the asking and answering of questions in the network. In their current set-up, answers to a question are arranged in chronological order. For effective information retrieval, it will be advantageous to have the users’ answers ranked according to their quality. This paper proposes a novel approach of evaluating and ranking the users’answers and recommending the top-n quality answers to information seekers. The proposed approach is based on a user-reputation method which assigns a score to an answer reflecting its answer author’s reputation level in the network. The proposed approach is evaluated on a dataset collected from a live cQA, namely, Yahoo! Answers. To compare the results obtained by the non-content-based user-reputation method, experiments were also conducted with several content-based methods that assign a score to an answer reflecting its content quality. Various combinations of non-content and content-based scores were also used in comparing results. Empirical analysis shows that the proposed method is able to rank the users’ answers and recommend the top-n answers with good accuracy. Results of the proposed method outperform the content-based methods, various combinations, and the results obtained by the popular link analysis method, HITS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose –Increasingly the company websites, along with the intermediary websites such as portal sites have become an integral component of the firms brand strategy. This study emphasises the importance of website service elements within portal sites and the impact on e-retailer brand attitudes and brand identity in an ever more competitive digital market-space. Design/methodology/approach– The research employs structural equation modeling technique to capture the relationship among website attitude, e-service quality, brand attitude and brand identity. Findings–The results from the study indicate consumer attitude perceptions toward portal website and e-service elements combine to increase brand attitude and also brand identity for e-retailers. Originality/value –Although there has been a plethora of studies evaluating corporate websites and branding interactions there is limited comprehension of the impact of intermediary portal sites. Moreover, the literature is limited in validating the link between e-services with brand attitude and brand identity within a portal website context. This study develops a framework that highlights the important influence of e-services within portal websites and the impact on the firm’s brand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: The purpose of the work presented in this paper was to determine whether patient positioning and delivery errors could be detected using electronic portal images of intensity modulated radiotherapy (IMRT). Patients and methods: We carried out a series of controlled experiments delivering an IMRT beam to a humanoid phantom using both the dynamic and multiple static field method of delivery. The beams were imaged, the images calibrated to remove the IMRT fluence variation and then compared with calibrated images of the reference beams without any delivery or position errors. The first set of experiments involved translating the position of the phantom both laterally and in a superior/inferior direction a distance of 1, 2, 5 and 10 mm. The phantom was also rotated 1 and 28. For the second set of measurements the phantom position was kept fixed and delivery errors were introduced to the beam. The delivery errors took the form of leaf position and segment intensity errors. Results: The method was able to detect shifts in the phantom position of 1 mm, leaf position errors of 2 mm, and dosimetry errors of 10% on a single segment of a 15 segment IMRT step and shoot delivery (significantly less than 1% of the total dose). Conclusions: The results of this work have shown that the method of imaging the IMRT beam and calibrating the images to remove the intensity modulations could be a useful tool in verifying both the patient position and the delivery of the beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The precise shape of the three-dimensional dose distributions created by intensity-modulated radiotherapy means that the verification of patient position and setup is crucial to the outcome of the treatment. In this paper, we investigate and compare the use of two different image calibration procedures that allow extraction of patient anatomy from measured electronic portal images of intensity-modulated treatment beams. Methods and Materials: Electronic portal images of the intensity-modulated treatment beam delivered using the dynamic multileaf collimator technique were acquired. The images were formed by measuring a series of frames or segments throughout the delivery of the beams. The frames were then summed to produce an integrated portal image of the delivered beam. Two different methods for calibrating the integrated image were investigated with the aim of removing the intensity modulations of the beam. The first involved a simple point-by-point division of the integrated image by a single calibration image of the intensity-modulated beam delivered to a homogeneous polymethyl methacrylate (PMMA) phantom. The second calibration method is known as the quadratic calibration method and required a series of calibration images of the intensity-modulated beam delivered to different thicknesses of homogeneous PMMA blocks. Measurements were made using two different detector systems: a Varian amorphous silicon flat-panel imager and a Theraview camera-based system. The methods were tested first using a contrast phantom before images were acquired of intensity-modulated radiotherapy treatment delivered to the prostate and pelvic nodes of cancer patients at the Royal Marsden Hospital. Results: The results indicate that the calibration methods can be used to remove the intensity modulations of the beam, making it possible to see the outlines of bony anatomy that could be used for patient position verification. This was shown for both posterior and lateral delivered fields. Conclusions: Very little difference between the two calibration methods was observed, so the simpler division method, requiring only the single extra calibration measurement and much simpler computation, was the favored method. This new method could provide a complementary tool to existing position verification methods, and it has the advantage that it is completely passive, requiring no further dose to the patient and using only the treatment fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accuracy of dose delivery in external beam radiotherapy is usually verified with electronic portal imaging (EPI) in which the treatment beam is used to check the positioning of the patient. However the resulting megavoltage x-ray images suffer from poor quality. The image quality can be improved by developing a special operating mode in the linear accelerator. The existing treatment beam is modified such that it produces enough low-energy photons for imaging. In this work the problem of optimizing the beam/detector combination to achieve optimal electronic portal image quality is addressed. The linac used for this study was modified to produce two experimental photon beams. These beams, named Al6 and Al10, were non-flat and were produced by 4MeV electrons hitting aluminum targets, 6 and 10mm thick respectively. The images produced by a conventional EPI system (6MV treatment beam and camera-based EPID with a Cu plate & Gd2O2S screen ) were compared with the images produced by the experimental beams and various screens with the same camera). The contrast of 0.8cm bone equivalent material in 5 cm water increased from 1.5% for the conventional system to 11% for the combination of Al6 beam with a 200mg/cm2 Gd2O2S screen. The signal-to-noise ratio calculated for 1cGy flood field images increased by about a factor of two for the same EPI systems. The spatial resolution of the two imaging systems was comparable. This work demonstrates that significant improvements in portal image contrast can be obtained by simultaneous optimization of the linac spectrum and EPI detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have taken a new method of calibrating portal images of IMRT beams and used this to measure patient set-up accuracy and delivery errors, such as leaf errors and segment intensity errors during treatment. A calibration technique was used to remove the intensity modulations from the images leaving equivalent open field images that show patient anatomy that can be used for verification of the patient position. The images of the treatment beam can also be used to verify the delivery of the beam in terms of multileaf collimator leaf position and dosimetric errors. A series of controlled experiments delivering an IMRT anterior beam to the head and neck of a humanoid phantom were undertaken. A 2mm translation in the position of the phantom could be detected. With intentional introduction of delivery errors into the beam this method allowed us to detect leaf positioning errors of 2mm and variation in monitor units of 1%. The method was then applied to the case of a patient who received IMRT treatment to the larynx and cervical nodes. The anterior IMRT beam was imaged during four fractions and the images calibrated and investigated for the characteristic signs of patient position error and delivery error that were shown in the control experiments. No significant errors were seen. The method of imaging the IMRT beam and calibrating the images to remove the intensity modulations can be a useful tool in verifying both the patient position and the delivery of the beam.