778 resultados para akaike information criterion

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carried out a discriminant analysis with identity by descent (IBD) at each marker as inputs, and the sib pair type (affected-affected versus affected-unaffected) as the output. Using simple logistic regression for this discriminant analysis, we illustrate the importance of comparing models with different number of parameters. Such model comparisons are best carried out using either the Akaike information criterion (AIC) or the Bayesian information criterion (BIC). When AIC (or BIC) stepwise variable selection was applied to the German Asthma data set, a group of markers were selected which provide the best fit to the data (assuming an additive effect). Interestingly, these 25-26 markers were not identical to those with the highest (in magnitude) single-locus lod scores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Ecological data sets often use clustered measurements or use repeated sampling in a longitudinal design. Choosing the correct covariance structure is an important step in the analysis of such data, as the covariance describes the degree of similarity among the repeated observations. 2. Three methods for choosing the covariance are: the Akaike information criterion (AIC), the quasi-information criterion (QIC), and the deviance information criterion (DIC). We compared the methods using a simulation study and using a data set that explored effects of forest fragmentation on avian species richness over 15 years. 3. The overall success was 80.6% for the AIC, 29.4% for the QIC and 81.6% for the DIC. For the forest fragmentation study the AIC and DIC selected the unstructured covariance, whereas the QIC selected the simpler autoregressive covariance. Graphical diagnostics suggested that the unstructured covariance was probably correct. 4. We recommend using DIC for selecting the correct covariance structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal and infant mortality is a global health issue with a significant social and economic impact. Each year, over half a million women worldwide die due to complications related to pregnancy or childbirth, four million infants die in the first 28 days of life, and eight million infants die in the first year. Ninety-nine percent of maternal and infant deaths are in developing countries. Reducing maternal and infant mortality is among the key international development goals. In China, the national maternal mortality ratio and infant mortality rate were reduced greatly in the past two decades, yet a large discrepancy remains between urban and rural areas. To address this problem, a large-scale Safe Motherhood Programme was initiated in 2000. The programme was implemented in Guangxi in 2003. Interventions in the programme included both demand-side and supply side-interventions focusing on increasing health service use and improving birth outcomes. Little is known about the effects and economic outcomes of the Safe Motherhood Programme in Guangxi, although it has been implemented for seven years. The aim of this research is to estimate the effectiveness and cost-effectiveness of the interventions in the Safe Motherhood Programme in Guangxi, China. The objectives of this research include: 1. To evaluate whether the changes of health service use and birth outcomes are associated with the interventions in the Safe Motherhood Programme. 2. To estimate the cost-effectiveness of the interventions in the Safe Motherhood Programme and quantify the uncertainty surrounding the decision. 3. To assess the expected value of perfect information associated with both the whole decision and individual parameters, and interpret the findings to inform priority setting in further research and policy making in this area. A quasi-experimental study design was used in this research to assess the effectiveness of the programme in increasing health service use and improving birth outcomes. The study subjects were 51 intervention counties and 30 control counties. Data on the health service use, birth outcomes and socio-economic factors from 2001 to 2007 were collected from the programme database and statistical yearbooks. Based on the profile plots of the data, general linear mixed models were used to evaluate the effectiveness of the programme while controlling for the effects of baseline levels of the response variables, change of socio-economic factors over time and correlations among repeated measurements from the same county. Redundant multicollinear variables were deleted from the mixed model using the results of the multicollinearity diagnoses. For each response variable, the best covariance structure was selected from 15 alternatives according to the fit statistics including Akaike information criterion, Finite-population corrected Akaike information criterion, and Schwarz.s Bayesian information criterion. Residual diagnostics were used to validate the model assumptions. Statistical inferences were made to show the effect of the programme on health service use and birth outcomes. A decision analytic model was developed to evaluate the cost-effectiveness of the programme, quantify the decision uncertainty, and estimate the expected value of perfect information associated with the decision. The model was used to describe the transitions between health states for women and infants and reflect the change of both costs and health benefits associated with implementing the programme. Result gained from the mixed models and other relevant evidence identified were synthesised appropriately to inform the input parameters of the model. Incremental cost-effectiveness ratios of the programme were calculated for the two groups of intervention counties over time. Uncertainty surrounding the parameters was dealt with using probabilistic sensitivity analysis, and uncertainty relating to model assumptions was handled using scenario analysis. Finally the expected value of perfect information for both the whole model and individual parameters in the model were estimated to inform priority setting in further research in this area.The annual change rates of the antenatal care rate and the institutionalised delivery rate were improved significantly in the intervention counties after the programme was implemented. Significant improvements were also found in the annual change rates of the maternal mortality ratio, the infant mortality rate, the incidence rate of neonatal tetanus and the mortality rate of neonatal tetanus in the intervention counties after the implementation of the programme. The annual change rate of the neonatal mortality rate was also improved, although the improvement was only close to statistical significance. The influences of the socio-economic factors on the health service use indicators and birth outcomes were identified. The rural income per capita had a significant positive impact on the health service use indicators, and a significant negative impact on the birth outcomes. The number of beds in healthcare institutions per 1,000 population and the number of rural telephone subscribers per 1,000 were found to be positively significantly related to the institutionalised delivery rate. The length of highway per square kilometre negatively influenced the maternal mortality ratio. The percentage of employed persons in the primary industry had a significant negative impact on the institutionalised delivery rate, and a significant positive impact on the infant mortality rate and neonatal mortality rate. The incremental costs of implementing the programme over the existing practice were US $11.1 million from the societal perspective, and US $13.8 million from the perspective of the Ministry of Health. Overall, 28,711 life years were generated by the programme, producing an overall incremental cost-effectiveness ratio of US $386 from the societal perspective, and US $480 from the perspective of the Ministry of Health, both of which were below the threshold willingness-to-pay ratio of US $675. The expected net monetary benefit generated by the programme was US $8.3 million from the societal perspective, and US $5.5 million from the perspective of the Ministry of Health. The overall probability that the programme was cost-effective was 0.93 and 0.89 from the two perspectives, respectively. The incremental cost-effectiveness ratio of the programme was insensitive to the different estimates of the three parameters relating to the model assumptions. Further research could be conducted to reduce the uncertainty surrounding the decision, in which the upper limit of investment was US $0.6 million from the societal perspective, and US $1.3 million from the perspective of the Ministry of Health. It is also worthwhile to get a more precise estimate of the improvement of infant mortality rate. The population expected value of perfect information for individual parameters associated with this parameter was US $0.99 million from the societal perspective, and US $1.14 million from the perspective of the Ministry of Health. The findings from this study have shown that the interventions in the Safe Motherhood Programme were both effective and cost-effective in increasing health service use and improving birth outcomes in rural areas of Guangxi, China. Therefore, the programme represents a good public health investment and should be adopted and further expanded to an even broader area if possible. This research provides economic evidence to inform efficient decision making in improving maternal and infant health in developing countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Interventions that prevent healthcare-associated infection should lead to fewer deaths and shorter hospital stays. Cleaning hands (with soap or alcohol) is an effective way to prevent the transmission of organisms, but rates of compliance with hand hygiene are sometimes disappointingly low. The National Hand Hygiene Initiative in Australia aimed to improve hand hygiene compliance among healthcare workers, with the goal of reducing rates of healthcare-associated infection. Methods. We examined whether the introduction of the National Hand Hygiene Initiative was associated with a change in infection rates. Monthly infection rates for healthcare-associated Staphylococcus aureus bloodstream infections were examined in 38 Australian hospitals across 6 states. We used Poisson regression and examined 12 possible patterns of change, with the best fitting pattern chosen using the Akaike information criterion. Monthly bed-days were included to control for increased hospital use over time. Results. The National Hand Hygiene Initiative was associated with a reduction in infection rates in 4 of the 6 states studied. Two states showed an immediate reduction in rates of 17% and 28%, 2 states showed a linear decrease in rates of 8% and 11% per year, and 2 showed no change in infection rates. Conclusions. The intervention was associated with reduced infection rates in most states. The failure in 2 states may have been because those states already had effective initiatives before the national initiative’s introduction or because infection rates were already low and could not be further reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research problem: Overfitting and collinearity problems commonly exist in current construction cost estimation applications and obstruct researchers and practitioners in achieving better modelling results. Research objective and method: A hybrid approach of Akaike information criterion (AIC) stepwise regression and principal component regression (PCR) is proposed to help solve overfitting and collinearity problems. Utilization of this approach in linear regression is validated by comparing it with other commonly used approaches. The mean square error obtained by leave-one-out cross validation (MSELOOCV) is used in model selection in deciding predictive variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Large-scale patterns linking energy availability, biological productivity and diversity form a central focus of ecology. Despite evidence that the activity and abundance of animals may be limited by climatic variables associated with regional biological productivity (e.g. mean annual precipitation and annual actual evapotranspiration), it is unclear whether plant–granivore interactions are themselves influenced by these climatic factors across broad spatial extents. We evaluated whether climatic conditions that are known to alter the abundance and activity of granivorous animals also affect rates of seed removal. Location Eleven sites across temperate North America. Methods We used a common protocol to assess the removal of the same seed species (Avena sativa) over a 2-day period. Model selection via the Akaike information criterion was used to determine a set of candidate binomial generalized linear mixed models that evaluated the relationship between local climatic data and post-dispersal seed predation. Results Annual actual evapotranspiration was the single best predictor of the proportion of seeds removed. Annual actual evapotranspiration and mean annual precipitation were both positively related to mean seed removal and were included in four and three of the top five models, respectively. Annual temperature range was also positively related to seed removal and was an explanatory variable in three of the top four models. Main conclusions Our work provides the first evidence that energy and precipitation, which are known to affect consumer abundance and activity, also translate to strong, predictable patterns of seed predation across a continent. More generally, these findings suggest that future changes in temperature and precipitation could have widespread consequences for plant species composition in grasslands, through impacts on plant recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The traditional searching method for model-order selection in linear regression is a nested full-parameters-set searching procedure over the desired orders, which we call full-model order selection. On the other hand, a method for model-selection searches for the best sub-model within each order. In this paper, we propose using the model-selection searching method for model-order selection, which we call partial-model order selection. We show by simulations that the proposed searching method gives better accuracies than the traditional one, especially for low signal-to-noise ratios over a wide range of model-order selection criteria (both information theoretic based and bootstrap-based). Also, we show that for some models the performance of the bootstrap-based criterion improves significantly by using the proposed partial-model selection searching method. Index Terms— Model order estimation, model selection, information theoretic criteria, bootstrap 1. INTRODUCTION Several model-order selection criteria can be applied to find the optimal order. Some of the more commonly used information theoretic-based procedures include Akaike’s information criterion (AIC) [1], corrected Akaike (AICc) [2], minimum description length (MDL) [3], normalized maximum likelihood (NML) [4], Hannan-Quinn criterion (HQC) [5], conditional model-order estimation (CME) [6], and the efficient detection criterion (EDC) [7]. From a practical point of view, it is difficult to decide which model order selection criterion to use. Many of them perform reasonably well when the signal-to-noise ratio (SNR) is high. The discrepancies in their performance, however, become more evident when the SNR is low. In those situations, the performance of the given technique is not only determined by the model structure (say a polynomial trend versus a Fourier series) but, more importantly, by the relative values of the parameters within the model. This makes the comparison between the model-order selection algorithms difficult as within the same model with a given order one could find an example for which one of the methods performs favourably well or fails [6, 8]. Our aim is to improve the performance of the model order selection criteria in cases where the SNR is low by considering a model-selection searching procedure that takes into account not only the full-model order search but also a partial model order search within the given model order. Understandably, the improvement in the performance of the model order estimation is at the expense of additional computational complexity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The relationship between temperature and mortality has been explored for decades and many temperature indicators have been applied separately. However, few data are available to show how the effects of different temperature indicators on different mortality categories, particularly in a typical subtropical climate. OBJECTIVE: To assess the associations between various temperature indicators and different mortality categories in Brisbane, Australia during 1996-2004. METHODS: We applied two methods to assess the threshold and temperature indicator for each age and death groups: mean temperature and the threshold assessed from all cause mortality was used for all mortality categories; the specific temperature indicator and the threshold for each mortality category were identified separately according to the minimisation of AIC. We conducted polynomial distributed lag non-linear model to identify effect estimates in mortality with one degree of temperature increase (or decrease) above (or below) the threshold on current days and lagged effects using both methods. RESULTS: Akaike's Information Criterion was minimized when mean temperature was used for all non-external deaths and deaths from 75 to 84 years; when minimum temperature was used for deaths from 0 to 64 years, 65-74 years, ≥ 85 years, and from the respiratory diseases; when maximum temperature was used for deaths from cardiovascular diseases. The effect estimates using certain temperature indicators were similar as mean temperature both for current day and lag effects. CONCLUSION: Different age groups and death categories were sensitive to different temperature indicators. However, the effect estimates from certain temperature indicators did not significantly differ from those of mean temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Definition of disease phenotype is a necessary preliminary to research into genetic causes of a complex disease. Clinical diagnosis of migraine is currently based on diagnostic criteria developed by the International Headache Society. Previously, we examined the natural clustering of these diagnostic symptoms using latent class analysis (LCA) and found that a four-class model was preferred. However, the classes can be ordered such that all symptoms progressively intensify, suggesting that a single continuous variable representing disease severity may provide a better model. Here, we compare two models: item response theory and LCA, each constructed within a Bayesian context. A deviance information criterion is used to assess model fit. We phenotyped our population sample using these models, estimated heritability and conducted genome-wide linkage analysis using Merlin-qtl. LCA with four classes was again preferred. After transformation, phenotypic trait values derived from both models are highly correlated (correlation = 0.99) and consequently results from subsequent genetic analyses were similar. Heritability was estimated at 0.37, while multipoint linkage analysis produced genome-wide significant linkage to chromosome 7q31-q33 and suggestive linkage to chromosomes 1 and 2. We argue that such continuous measures are a powerful tool for identifying genes contributing to migraine susceptibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes the use of the Bayes Factor to replace the Bayesian Information Criterion (BIC) as a criterion for speaker clustering within a speaker diarization system. The BIC is one of the most popular decision criteria used in speaker diarization systems today. However, it will be shown in this paper that the BIC is only an approximation to the Bayes factor of marginal likelihoods of the data given each hypothesis. This paper uses the Bayes factor directly as a decision criterion for speaker clustering, thus removing the error introduced by the BIC approximation. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, leading to a 14.7% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using Intra-class Correlation Coefficient (ICC) and Deviance Information Criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time, in good street lighting condition, involving pedestrian injuries are associated with a lower severity, while those in night time, at T/Y type intersections, on right-most lane, and installed with red light camera have larger odds of being severe. Moreover, heavy vehicles have a better resistance on severe crash, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel technique for segmenting an audio stream into homogeneous regions according to speaker identities, background noise, music, environmental and channel conditions. Audio segmentation is useful in audio diarization systems, which aim to annotate an input audio stream with information that attributes temporal regions of the audio into their specific sources. The segmentation method introduced in this paper is performed using the Generalized Likelihood Ratio (GLR), computed between two adjacent sliding windows over preprocessed speech. This approach is inspired by the popular segmentation method proposed by the pioneering work of Chen and Gopalakrishnan, using the Bayesian Information Criterion (BIC) with an expanding search window. This paper will aim to identify and address the shortcomings associated with such an approach. The result obtained by the proposed segmentation strategy is evaluated on the 2002 Rich Transcription (RT-02) Evaluation dataset, and a miss rate of 19.47% and a false alarm rate of 16.94% is achieved at the optimal threshold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a practical prediction procedure for vertical displacement of a Rotarywing Unmanned Aerial Vehicle (RUAV) landing deck in the presence of stochastic sea state disturbances. A proper time series model tending to capture characteristics of the dynamic relationship between an observer and a landing deck is constructed, with model orders determined by a novel principle based on Bayes Information Criterion (BIC) and coefficients identified using the Forgetting Factor Recursive Least Square (FFRLS) method. In addition, a fast-converging online multi-step predictor is developed, which can be implemented more rapidly than the Auto-Regressive (AR) predictor as it requires less memory allocations when updating coefficients. Simulation results demonstrate that the proposed prediction approach exhibits satisfactory prediction performance, making it suitable for integration into ship-helicopter approach and landing guidance systems in consideration of computational capacity of the flight computer.