468 resultados para advanced metering infrastructure (AMI)
em Queensland University of Technology - ePrints Archive
Resumo:
With the recent development of advanced metering infrastructure, real-time pricing (RTP) scheme is anticipated to be introduced in future retail electricity market. This paper proposes an algorithm for a home energy management scheduler (HEMS) to reduce the cost of energy consumption using RTP. The proposed algorithm works in three subsequent phases namely real-time monitoring (RTM), stochastic scheduling (STS) and real-time control (RTC). In RTM phase, characteristics of available controllable appliances are monitored in real-time and stored in HEMS. In STS phase, HEMS computes an optimal policy using stochastic dynamic programming (SDP) to select a set of appliances to be controlled with an objective of the total cost of energy consumption in a house. Finally, in RTC phase, HEMS initiates the control of the selected appliances. The proposed HEMS is unique as it intrinsically considers uncertainties in RTP and power consumption pattern of various appliances. In RTM phase, appliances are categorized according to their characteristics to ease the control process, thereby minimizing the number of control commands issued by HEMS. Simulation results validate the proposed method for HEMS.
Resumo:
Measuring the comparative sustainability levels of cities, regions, institutions and projects is an essential procedure in creating sustainable urban futures. This paper introduces a new urban sustainability assessment model: “The Sustainable Infrastructure, Land-use, Environment and Transport Model (SILENT)”. The SILENT Model is an advanced geographic information system and indicator-based comparative urban sustainability indexing model. The model aims to assist planners and policy makers in their daily tasks in sustainable urban planning and development by providing an integrated sustainability assessment framework. The paper gives an overview of the conceptual framework and components of the model and discusses the theoretical constructs, methodological procedures, and future development of this promising urban sustainability assessment model.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision-making system and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities via wired and wireless networks. Particularly, technology convergence creates new ways in which information and telecommunication technologies are used and formed the backbone of urban management. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices and provides new opportunities in the management of Ubiquitous Eco Cities. This chapter discusses developments in telecommunication infrastructure and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities
Resumo:
Post license advanced driver training programs in the US and early programs in Europe have often failed to accomplish their stated objectives because, it is suspected, that drivers gain self perceived driving skills that exceed their true skills—leading to increased post training crashes. The consensus from the evaluation of countless advanced driver training programs is that these programs are a detriment to safety, especially for novice, young, male drivers. Some European countries including Sweden, Finland, Austria, Luxembourg, and Norway, have continued to refine these programs, with an entirely new training philosophy emerging around 1990. These ‘post-renewal’ programs have shown considerable promise, despite various data quality and availability concerns. These programs share in common a focus on teaching drivers about self assessment and anticipation of risk, as opposed to teaching drivers how to master driving at the limits of tire adhesion. The programs focus on factors such as self actualization and driving discipline, rather than low level mastery of skills. Drivers are meant to depart these renewed programs with a more realistic assessment of their driving abilities. These renewed programs require considerable specialized and costly infrastructure including dedicated driver training facilities with driving modules engineered specifically for advanced driver training and highly structured curricula. They are conspicuously missing from both the US road safety toolbox and academic literature. Given the considerable road safety concerns associated with US novice male drivers in particular, these programs warrant further attention. This paper reviews the predominant features and empirical evidence surrounding post licensing advanced driver training programs focused on novice drivers. A clear articulation of differences between the renewed and current US advanced driver training programs is provided. While the individual quantitative evaluations range from marginally to significantly effective in reducing novice driver crash risk, they have been criticized for evaluation deficiencies ranging from small sample sizes to confounding variables to lack of exposure metrics. Collectively, however, the programs sited in the paper suggest at least a marginally positive effect that needs to be validated with further studies. If additional well controlled studies can validate these programs, a pilot program in the US should be considered.
Resumo:
This paper examines the interactions between knowledge and power in the adoption of technologies central to municipal water supply plans, specifically investigating decisions in Progressive Era Chicago regarding water meters. The invention and introduction into use of the reliable water meter early in the Progressive Era allowed planners and engineers to gauge water use, and enabled communities willing to invest in the new infrastructure to allocate costs for provision of supply to consumers relative to use. In an era where efficiency was so prized and the role of technocratic expertise was increasing, Chicago’s continued failure to adopt metering (despite levels of per capita consumption nearly twice that of comparable cities and acknowledged levels of waste nearing half of system production) may indicate that the underlying characteristics of the city’s political system and its elite stymied the implementation of metering technologies as in Smith’s (1977) comparative study of nineteenth century armories. Perhaps, as with Flyvbjerg’s (1998) study of the city of Aalborg, the powerful know what they want and data will not interfere with their conclusions: if the data point to a solution other than what is desired, then it must be that the data are wrong. Alternatively, perhaps the technocrats failed adequately to communicate their findings in a language which the political elite could understand, with the failure lying in assumptions of scientific or technical literacy rather than with dissatisfaction in outcomes (Benveniste 1972). When examined through a historical institutionalist perspective, the case study of metering adoption lends itself to exploration of larger issues of knowledge and power in the planning process: what governs decisions regarding knowledge acquisition, how knowledge and power interact, whether the potential to improve knowledge leads to changes in action, and, whether the decision to overlook available knowledge has an impact on future decisions.
Resumo:
The advanced programmatic risk analysis and management model (APRAM) is one of the recently developed methods that can be used for risk analysis and management purposes considering schedule, cost, and quality risks simultaneously. However, this model considers those failure risks that occur only over the design and construction phases of a project’s life cycle. While it can be sufficient for some projects for which the required cost during the operating life is much less than the budget required over the construction period, it should be modified in relation to infrastructure projects because the associated costs during the operating life cycle are significant. In this paper, a modified APRAM is proposed, which can consider potential risks that might occur over the entire life cycle of the project, including technical and managerial failure risks. Therefore, the modified model can be used as an efficient decision-support tool for construction managers in the housing industry in which various alternatives might be technically available. The modified method is demonstrated by using a real building project, and this demonstration shows that it can be employed efficiently by construction managers. The Delphi method was applied in order to figure out the failure events and their associated probabilities. The results show that although the initial cost of a cold-formed steel structural system is higher than a conventional construction system, the former’s failure cost is much lower than the latter’s
Resumo:
This paper presents a shared autonomy control scheme for a quadcopter that is suited for inspection of vertical infrastructure — tall man-made structures such as streetlights, electricity poles or the exterior surfaces of buildings. Current approaches to inspection of such structures is slow, expensive, and potentially hazardous. Low-cost aerial platforms with an ability to hover now have sufficient payload and endurance for this kind of task, but require significant human skill to fly. We develop a control architecture that enables synergy between the ground-based operator and the aerial inspection robot. An unskilled operator is assisted by onboard sensing and partial autonomy to safely fly the robot in close proximity to the structure. The operator uses their domain knowledge and problem solving skills to guide the robot in difficult to reach locations to inspect and assess the condition of the infrastructure. The operator commands the robot in a local task coordinate frame with limited degrees of freedom (DOF). For instance: up/down, left/right, toward/away with respect to the infrastructure. We therefore avoid problems of global mapping and navigation while providing an intuitive interface to the operator. We describe algorithms for pole detection, robot velocity estimation with respect to the pole, and position estimation in 3D space as well as the control algorithms and overall system architecture. We present initial results of shared autonomy of a quadrotor with respect to a vertical pole and robot performance is evaluated by comparing with motion capture data.
Resumo:
Passively protected railway crossings are a major rail safety issue in Australia. Such crossings cannot be upgraded as such crossings are too numerous and the cost involved is prohibitive. Advanced Driver Assistance Systems (ADAS) have been shown to improve road safety and are widely used. These systems could be a solution to improve safety of passively protected crossings at a lower cost. Such complementary ADAS could result in driver’s over-trust due to the absence of Humane Machine Interface reflecting the quality of the information or the state of the ADAS (failure status). This paper demonstrates that driver’s exposure to crossing exhibiting fail-safe and non-fail safe properties could result in improperly allocating trust between technologies. We conducted a driving simulator study where participants (N=58) were exposed to three types of level crossing warning system on passive and active crossings. The results show that a significant proportion of participants over-trust the ADAS. Such drivers exhibit the same driving performance with the ADAS as when exposed to infrastructure based active crossing protection. They do not take the necessary safety precautions as they have a faster speed approach, reduced number of gaze toward the rail tracks and fail to stop at the crossing.
Resumo:
Recurrent congestion caused by high commuter traffic is an irritation to motorway users. Ramp metering (RM) is the most effective motorway control means (M Papageorgiou & Kotsialos, 2002) for significantly reducing motorway congestion. However, given field constraints (e.g. limited ramp space and maximum ramp waiting time), RM cannot eliminate recurrent congestion during the increased long peak hours. This paper, therefore, focuses on rapid congestion recovery to further improve RM systems: that is, to quickly clear congestion in recovery periods. The feasibility of using RM for recovery is analyzed, and a zone recovery strategy (ZRS) for RM is proposed. Note that this study assumes no incident and demand management involved, i.e. no re-routing behavior and strategy considered. This strategy is modeled, calibrated and tested in the northbound model of the Pacific Motorway, Brisbane, Australia in a micro-simulation environment for recurrent congestion scenario, and evaluation results have justified its effectiveness.