40 resultados para adenosine triphosphatase
em Queensland University of Technology - ePrints Archive
Resumo:
RNA interference induced in insects after ingestion of plant-expressed hairpin RNA offers promise for managing devastating crop pests
Resumo:
Background Menstrual effluent affects mesothelial cell (MC) morphology. We evaluated whether these changes were consistent with epithelial-mesenchymal transitions (EMT). Methods Monolayer cultures of MC were incubated overnight in conditioned media, prepared from cells isolated form menstrual effluent, with or without kinase and ATP inhibitors. Changes in cell morphology were monitored using time-lapse video microscopy and immunohistochemistry. Effects on the expression of EMT-associated molecules were evaluated using real-time RT-PCR and/or Western blot analysis. Results Incubation in conditioned media disrupted cell-cell contacts, and increased MC motility. The changes were reversible. During the changes the distribution of cytokeratins, fibrillar actin and α-tubulin changed. Sodium azide, an inhibitor of ATP production, and Genistein, a general tyrosine kinase inhibitor, antagonized these effects. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, and SU6656, an Src tyrosine kinase inhibitor, only partially antagonized the effect. The expression of Snail and vimentin was markedly up-regulated, whereas the expression of E-cadherin was decreased and cytokeratins were altered. Conclusions In MC, menstrual effluent initiates a reversible, energy-dependent transition process from an epithelial to a mesenchymal phenotype. Involvement of the (Src) tyrosine kinase signalling pathway and the changes in the expression of cytokeratins, Snail, vimentin and E-cadherin demonstrate that the morphological changes are EMT.
Resumo:
Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.
Resumo:
Objectives This prospective study investigated the effects of caffeine ingestion on the extent of adenosine-induced perfusion abnormalities during myocardial perfusion imaging (MPI). Methods Thirty patients with inducible perfusion abnormalities on standard (caffeine-abstinent) adenosine MPI underwent repeat testing with supplementary coffee intake. Baseline and test MPIs were assessed for stress percent defect, rest percent defect, and percent defect reversibility. Plasma levels of caffeine and metabolites were assessed on both occasions and correlated with MPI findings. Results Despite significant increases in caffeine [mean difference 3,106 μg/L (95% CI 2,460 to 3,752 μg/L; P < .001)] and metabolite concentrations over a wide range, there was no statistically significant change in stress percent defect and percent defect reversibility between the baseline and test scans. The increase in caffeine concentration between the baseline and the test phases did not affect percent defect reversibility (average change −0.003 for every 100 μg/L increase; 95% CI −0.17 to 0.16; P = .97). Conclusion There was no significant relationship between the extent of adenosine-induced coronary flow heterogeneity and the serum concentration of caffeine or its principal metabolites. Hence, the stringent requirements for prolonged abstinence from caffeine before adenosine MPI—based on limited studies—appear ill-founded.
Resumo:
Purine compounds, such as caffeine, have many health-promoting properties and have proven to be beneficial in treating a number of different conditions. Theacrine, a purine alkaloid structurally similar to caffeine and abundantly present in Camellia kucha, has recently become of interest as a potential therapeutic compound. In the present study, theacrine was tested using a rodent behavioral model to investigate the effects of the drug on locomotor activity. Long Evans rats were injected with theacrine (24 or 48 mg/kg, i.p.) and activity levels were measured. Results showed that the highest dose of theacrine (48 mg/kg, i.p.) significantly increased locomotor activity compared to control animals and activity remained elevated throughout the duration of the session. To test for the involvement of adenosine receptors underlying theacrine's motor-activating properties, rats were administered a cocktail of the adenosine A₁ agonist, N⁶-cyclopentyladenosine (CPA; 0.1 mg/kg, i.p.) and A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.2 mg/kg, i.p.). Pre-treatment with theacrine significantly attenuated the motor depression induced by the adenosine receptor agonists, indicating that theacrine is likely acting as an adenosine receptor antagonist. Next, we examined the role of DA D₁ and D₂ receptor antagonism on theacrine-induced hyperlocomotion. Both antagonists, D₁R SCH23390 (0.1 or 0.05 mg/kg, i.p.) and D₂R eticlopride (0.1 mg/kg, i.p.), significantly reduced theacrine-stimulated activity indicating that this behavioral response, at least in part, is mediated by DA receptors. In order to investigate the brain region where theacrine may be acting, the drug (10 or 20 μg) was infused bilaterally into nucleus accumbens (NAc). Theacrine enhanced activity levels in a dose-dependent manner, implicating a role of the NAc in modulating theacrine's effects on locomotion. In addition, theacrine did not induce locomotor sensitization or tolerance after chronic exposure. Taken together, these findings demonstrate that theacrine significantly enhances activity; an effect which is mediated by both the adenosinergic and dopaminergic systems.
Resumo:
Adenosine is an important cardioprotective agent that works via several adenosine receptor (ADOR) subtypes to regulate cardiovascular activity. It is well established that functional responses to adenosine decline with age. What is unclear, though, is whether these changes occur at the receptor, second messenger or translational level. In this study we determined the effect of age on cardiac adenosine receptor expression using the housekeeping gene 18S rRNA versus the adenosine A2B receptor gene as internal controls. Absolute quantification showed that no age-related changes occurred in the expression of 18S rRNA or adenosine A2B receptor internal control genes. Subsequently, relative analysis of the adenosine receptor subtypes using 18S rRNA found a significant age-related reduction in the expression of the adenosine A1 receptor (5.5-fold), with no changes in the expression of the adenosine A2A, A2B and A3 receptors. When using the expression of the adenosine A2B receptor as the internal control gene, a significant down regulation of both the adenosine A1 (5.4-fold) and A2A (2.2-fold) receptors with no change in the expression of adenosine A3 receptor was found. Therefore, the high level of expression of the 18S rRNA housekeeping gene was found to mask a significant change in expression of the adenosine A2A receptor with age. Ultimately, these findings show an age-related reduction in adenosine A1 and A2A receptor expression in rat heart.
Resumo:
OBJECTIVE: To test markers within adenosine-related genes: A1 and A2a receptors (ADORA1, ADORA2a) and adenosine deaminase (ADA) for potential involvement in essential hypertension (EH). DESIGN: Case-control association study investigating gene variants for the ADORA1, ADORA2a and ADA genes. PARTICIPANTS: The study used a cohort of 249 unrelated hypertensive individuals who were diagnosed with hypertension, and an age, sex and ethnically matched group of 249 normotensive controls. RESULTS: The association analysis indicated that both allele and genotype frequencies did not differ significantly between the case and control groups (P > 0.05) for any of the markers tested. CONCLUSION: The adenosine-related gene variants do not appear to alter susceptibility to the disease in this group of essential hypertensives. However, involvement of these genes and the adenosine system cannot be conclusively excluded from essential hypertension pathogenesis as other gene variants may still be involved.
Resumo:
In our laboratory we have developed a quantitative-polymerase chain reaction (Q-PCR) strategy to examine the differential expression of adenosine receptor (ADOR), A(1), A(2A), A(2B) and A(3), and estrogen receptors (ER) alpha and beta. Brain and uterine mRNA were first used to optimise specific amplification conditions prior to SYBR Green I real time analysis of receptor subtype expression. SYBR Green I provided a convenient and sensitive means of examining specific PCR amplification product in real time, and allowed the generation of standard curves from which relative receptor abundance could be determined. Real time Q-PCR analysis was then performed, to examine changes in receptor expression levels in brains of adult female Wistar rats 3-month post ovariectomy. Comparison with sham-operated age-matched control rats demonstrated both comparative and absolute-copy number changes in receptor levels. Evaluation of both analytical methods investigated 18S rRNA as an internal reference for comparative gene expression analysis in the brain. The results of this study revealed preferential repression of ADORA(2A) (>4-fold down) and consistent (>2-fold) down-regulation of ADORA(1), ADORA(3), and ER-beta, following ovariectomy. No change was found in ADORA(2B) or ER-alpha. Analysis of absolute copy number in this study revealed a correlation between receptor expression in response to ovariectomy, and relative receptor subtype abundance in the brain.
Resumo:
The novel pyrazolo[3,4-d]pyrimidine compound GU285 (4-amino-6-alpha-carbamoylethylthio-1- phenylpyrazolo[3,4-d]pyrimidine, CAS 134896-40-5) was examined for its ability (1) to inhibit binding of adenosine (ADO) receptor ligands in rat brain membranes, (2) to antagonise functional responses to ADO agonists in rat right and left atria and coronary resistance vessels, and (3) to reduce the fall in heart rate and arterial blood pressure produced by the ADO A1 agonist N6-cyclopentyladenosine (CPA) in the intact, anaesthetized rat. GU285 competitively inhibited binding of the ADO A1 agonist [3H]-R-N6-phenylisopropyladenosine (R-PIA) yielding a Ki value of 11 (7-18) nmol.l-1 (geometric mean +/- 95% Cl). When assayed against the ADO A2A selective agonist [3H]-2-[p-(2-carboxyethyl)- phenethylamino]-5'-N-ethylcarboxamidoadenosine, (CGS21680), a Ki of 15 (10-24) nmol.l-1 was obtained. In spontaneously beating right atria, GU285 competitively antagonized negative chronotropic effects of R-PIA with a pA2 of 8.7 +/- 0.3 and in electrically paced left atria, GU285 competitively antagonized negative inotropic effects of R-PIA with a pA2 of 9.0 +/- 0.1. In the potassium-arrested, perfused rat heart GU285 (1 mumol.l-1) antagonized only the high sensitivity, ADO A2B mediated component of the biphasic relaxation of the coronary vasculature produced by NECA. The low sensitivity component was unchanged. GU285 (1 mumol.kg-1) antagonized the negative chronotropic and hypotensive effects of the adenosine A1 agonist CPA in anaesthetized rats, producing a 10-fold rightward shift in the dose-response relationship. These data demonstrate that in the rat, GU285 is a potent, non-selective adenosine receptor antagonist that maintains its activity in vivo.
Resumo:
1. The vasodilator effects of adenosine receptor agonists, isoprenaline and histamine were examined in perfused heart preparations from young (4–6 weeks) and mature (12–20 weeks) rats. 2. Adenosine induced a biphasic concentration-dependent decrease in KCl (35 mM) raised coronary perfusion pressure in hearts from young and mature rats, suggesting the presence of both high- and low-affinity sites for adenosine receptors in the two age groups tested. In heart preparations from mature rats, vasodilator responses to adenosine were significantly reduced compared with responses observed in young rats. 3. Responses to 5′-N-ethylcarboxamidoadenosine (NECA) and 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) were reduced in preparations from mature rats, whereas the vasodilator actions of N6-cyclopentyladenosine (CPA) and N6-2-(4-aminophenyl)ethyladenosine (APNEA) did not change with age. 4. The results presented in this study suggest that several adenosine receptor subtypes mediate vasodilator responses in the coronary circulation of the rat and that a reduction in response to adenosine with age may be due to changes in the high-affinity receptor site.
Resumo:
Biphasic vasodilatory responses to adenosine and 5'-N-ethylcarboxamidoadenosine (NECA) were observed in the coronary vasculature of K(+)-arrested perfused rat hearts. Dose-response data for both agonists were best represented by two-site models. For adenosine, two sites with negative log ED50 (pED50) values of 8.1 +/- 0.1 (mean +/- S.E.M) and 5.2 +/- 0.1 were obtained, mediating 31 +/- 2% and 69 +/- 2% of the total response. In the presence of 8-phenyltheophylline, the vasodilatory response to adenosine remained best fitted to a two-site model with pED50 values of 7.0 +/- 0.2 and 5.4 +/- 0.2. The relative contribution of each site to the total response remained unchanged. For NECA, pED50 values of 9.6 +/- 0.1 and 6.8 +/- 0.2 were obtained, representing 48 +/- 3% and 52 +/- 3% of the sites, respectively. In contrast, ATP produced a monophasic response with a pED50 value of 8.8 +/- 0.1. These results provide evidence of adenosine receptor and response heterogeneity in the in situ coronary vasculature.
Resumo:
Exogenous adenosine causes a monophasic dilation of the coronary vessels in paced, perfused rat heart preparations. Because levels of endogenous adenosine in paced hearts may mask the presence of high potency adenosine receptors, we have developed a method to measure coronary vascular responses in a potassium-arrested heart. Hearts from adult male, Wistar rats were perfused at a constant flow rate of 10 mL/min in the nonrecirculating, Langendorff mode, using Krebs-Henseleit buffer. After 30 min, coronary perfusion pressure was 44 +/- 1 mmHg (mean +/- SEM). Hearts were then perfused with a modified Krebs-Henseleit buffer containing 35 mM potassium. Coronary perfusion pressure increased by 84 +/- 3 mmHg. Adenosine-induced reductions in coronary perfusion pressure were expressed as a percentage of the maximal increase in pressure produced by modified Krebs-Henseleit buffer from the equilibration level. A concentration-response curve for adenosine (n = 6) was biphasic and best described by the presence of two adenosine receptors, with negative log EC50 values of 8.8 +/- 0.3 and 4.3 +/- 0.1, representing 29 +/- 3 and 71 +/- 3%, respectively, of the observed response. Interstitial adenosine sampled by microdialysis during potassium arrest was 25% of the concentration found in paced hearts. Endogenous adenosine in nonarrested hearts may obscure the biphasic response of the coronary vessels to adenosine.
Resumo:
Computer graphic analyses on a broad spectrum of adenosine receptor ligands has shown that both the A1 and A2 adenosine receptors have three binding sites. The spatial relationship of these three binding sites has been defined. Adenosine orientation at A1 and A2 is different.