186 resultados para activation schemes
em Queensland University of Technology - ePrints Archive
Resumo:
The effect of mechanochemical activation upon the intercalation of formamide into a high-defect kaolinite has been studied using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. X-ray diffraction shows that the intensity of the d(001) spacing decreases with grinding time and that the intercalated high-defect kaolinite expands to 10.2 A. The intensity of the peak of the expanded phase of the formamide-intercalated kaolinite decreases with grinding time. Thermal analysis reveals that the evolution temperature of the adsorbed formamide and loss of the inserting molecule increases with increased grinding time. The temperature of the dehydroxylation of the formamide-intercalated high-defect kaolinite decreases from 495 to 470oC with mechanochemical activation. Changes in the surface structure of the mechanochemically activated formamide-intercalated high-defect kaolinite were followed by DRIFT spectroscopy. Fundamentally the intensity of the high-defect kaolinite hydroxyl stretching bands decreases exponentially with grinding time and simultaneously the intensity of the bands attributed to the OH stretching vibrations of water increased. It is proposed that the mechanochemical activation of the high-defect kaolinite caused the conversion of the hydroxyls to water which coordinates the kaolinite surface. Significant changes in the infrared bands assigned to the hydroxyl deformation and amide stretching and bending modes were observed. The intensity decrease of these bands was exponentially related to the grinding time. The position of the amide C&unknown;O vibrational mode was found to be sensitive to grinding time. The effect of mechanochemical activation of the high-defect kaolinite reduces the capacity of the kaolinite to be intercalated with formamide.
Resumo:
This paper considers how the Internet can be used to leverage commercial sponsorships to enhance audience attitudes toward the sponsor. Definitions are offered that distinguish the terms leverage and activation with respect to sponsorship-linked marketing; leveraging encompasses all marketing communications collateral to the sponsorship investment, whereas activation relates to those communications that encourage interaction with the sponsor. Although activation in many instances may be limited to the immediate event-based audience, leveraging sponsorships via sponsors' Web sites enables activation at the mass-media audience level. Results of a Web site navigation experiment demonstrate that activational sponsor Web sites promote more favorable attitudes than do nonactivational Web sites. It is also shown that sponsorsponsee congruence effects generalize to the online environment, and that the effects of sponsorship articulation on audience attitudes are moderated by the commerciality of the explanation for the sponsor-sponsee relationship. Importantly, the study reveals that attitudinal effects associated with variations in leveraging, congruence, and orientation of articulation may be sustained across time.
Resumo:
A strong designated verifier signature scheme makes it possible for a signer to convince a designated verifier that she has signed a message in such a way that the designated verifier cannot transfer the signature to a third party, and no third party can even verify the validity of a designated verifier signature. We show that anyone who intercepts one signature can verify subsequent signatures in Zhang-Mao ID-based designated verifier signature scheme and Lal-Verma ID-based designated verifier proxy signature scheme. We propose a new and efficient ID-based designated verifier signature scheme that is strong and unforgeable. As a direct corollary, we also get a new efficient ID-based designated verifier proxy signature scheme.
Resumo:
Anomalous dynamics in complex systems have gained much interest in recent years. In this paper, a two-dimensional anomalous subdiffusion equation (2D-ASDE) is considered. Two numerical methods for solving the 2D-ASDE are presented. Their stability, convergence and solvability are discussed. A new multivariate extrapolation is introduced to improve the accuracy. Finally, numerical examples are given to demonstrate the effectiveness of the schemes and confirm the theoretical analysis.