365 resultados para accident occurrence analysis

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study presented in this paper reviewed 9,358 accidents which occurred in the U.S. construction industry between 2002 and 2011, in order to understand the relationships between the risk factors and injury severity (e.g. fatalities, hospitalized injuries, or non-hospitalized injuries) and to develop a strategic prevention plan to reduce the likelihood of fatalities where an accident is unavoidable. The study specifically aims to: (1) verify the relationships among risk factors, accident types, and injury severity, (2) determine significant risk factors associated with each accident type that are highly correlated to injury severity, and (3) analyze the impact of the identified key factors on accident and fatality occurrence. The analysis results explained that safety managers’ roles are critical to reducing human-related risks—particularly misjudgement of hazardous situations—through safety training and education, appropriate use of safety devices and proper safety inspection. However, for environment-related factors, the dominant risk factors were different depending on the different accident types. The outcomes of this study will assist safety managers to understand the nature of construction accidents and plan for strategic risk mitigation by prioritizing high frequency risk factors to effectively control accident occurrence and manage the likelihood of fatal injuries on construction sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The traffic conflict technique (TCT) is a powerful technique applied in road traffic safety assessment as a surrogate of the traditional accident data analysis. It has subdued the conceptual and implemental weaknesses of the accident statistics. Although this technique has been applied effectively in road traffic, it has not been practised well in marine traffic even though this traffic system has some distinct advantages in terms of having a monitoring system. This monitoring system can provide navigational information as well as other geometric information of the ships for a larger study area over a longer time period. However, for implementing the TCT in the marine traffic system, it should be examined critically to suit the complex nature of the traffic system. This paper examines the suitability of the TCT to be applied to marine traffic and proposes a framework for a follow up comprehensive conflict study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To enhance workplace safety in the construction industry it is important to understand interrelationships among safety risk factors associated with construction accidents. This study incorporates the systems theory into Heinrich’s domino theory to explore the interrelationships of risks and break the chain of accident causation. Through both empirical and statistical analyses of 9,358 accidents which occurred in the U.S. construction industry between 2002 and 2011, the study investigates relationships between accidents and injury elements (e.g., injury type, part of body, injury severity) and the nature of construction injuries by accident type. The study then discusses relationships between accidents and risks, including worker behavior, injury source, and environmental condition, and identifies key risk factors and risk combinations causing accidents. The research outcomes will assist safety managers to prioritize risks according to the likelihood of accident occurrence and injury characteristics, and pay more attention to balancing significant risk relationships to prevent accidents and achieve safer working environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Skid resistance is a condition parameter characterising the contribution that a road makes to the friction between a road surface and a vehicle tyre. Studies of traffic crash histories around the world have consistently found that a disproportionate number of crashes occur where the road surface has a low level of surface friction and/or surface texture, particularly when the road surface is wet. Various research results have been published over many years and have tried to quantify the influence of skid resistance on accident occurrence and to characterise a correlation between skid resistance and accident frequency. Most of the research studies used simple statistical correlation methods in analysing skid resistance and crash data.----- ------ Preliminary findings of a systematic and extensive literature search conclude that there is rarely a single causation factor in a crash. Findings from research projects do affirm various levels of correlation between skid resistance and accident occurrence. Studies indicate that the level of skid resistance at critical places such as intersections, curves, roundabouts, ramps and approaches to pedestrian crossings needs to be well maintained.----- ----- Management of risk is an integral aspect of the Queensland Department of Main Roads (QDMR) strategy for managing its infrastructure assets. The risk-based approach has been used in many areas of infrastructure engineering. However, very limited information is reported on using risk-based approach to mitigate crash rates related to road surface. Low skid resistance and surface texture may increase the risk of traffic crashes.----- ----- The objectives of this paper are to explore current issues of skid resistance in relation to crashes, to provide a framework of probability-based approach to be adopted by QDMR in assessing the relationship between crash accidents and pavement properties, and to explain why the probability-based approach is a suitable tool for QDMR in order to reduce accident rates due to skid resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Positive user experience (UX) has become a key factor in designing interactive products. It acts as a differentiator which can determine a product’s success on the mature market. However, current UX frameworks and methods do not fully support the early stages of product design and development. During these phases, assessment of UX is challenging as no actual user-product interaction can be tested. This qualitative study investigated anticipated user experience (AUX) to address this problem. Using the co-discovery method, participants were asked to imagine a desired product, anticipate experiences with it, and discuss their views with another participant. Fourteen sub-categories emerged from the data, and relationships among them were defined through co-occurrence analysis. These data formed the basis of the AUX framework which consists of two networks which elucidate 1) how users imagine a desired product and 2) how they anticipate positive experiences with that product. Through this AUX framework, important factors in the process of imagining future products and experiences were learnt, including the way in which these factors interrelate. Focusing on and exploring each component of the two networks in the framework will allow designers to obtain a deeper understanding of the required pragmatic and hedonic qualities of product, intended uses of product, user characteristics, potential contexts of experience, and anticipated emotions embedded within the experience. This understanding, in turn, will help designers to better foresee users’ underlying needs and to focus on the most important aspects of their positive experience. Therefore, the use of the AUX framework in the early stages of product development will contribute to the design for pleasurable UX.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper describes a safety data recording and analysis system that has been developed to capture safety occurrences including precursors using high-definition forward-facing video from train cabs and data from other train-borne systems. The paper describes the data processing model and how events detected through data analysis are related to an underlying socio-technical model of accident causation. The integrated approach to safety data recording and analysis insures systemic factors that condition, influence or potentially contribute to an occurrence are captured both for safety occurrences and precursor events, providing a rich tapestry of antecedent causal factors that can significantly improve learning around accident causation. This can ultimately provide benefit to railways through the development of targeted and more effective countermeasures, better risk models and more effective use and prioritization of safety funds. Level crossing occurrences are a key focus in this paper with data analysis scenarios describing causal factors around near-miss occurrences. The paper concludes with a discussion on how the system can also be applied to other types of railway safety occurrences.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The development of methods for real-time crash prediction as a function of current or recent traffic and roadway conditions is gaining increasing attention in the literature. Numerous studies have modeled the relationships between traffic characteristics and crash occurrence, and significant progress has been made. Given the accumulated evidence on this topic and the lack of an articulate summary of research status, challenges, and opportunities, there is an urgent need to scientifically review these studies and to synthesize the existing state-of-the-art knowledge. This paper addresses this need by undertaking a systematic literature review to identify current knowledge, challenges, and opportunities, and then conducts a meta-analysis of existing studies to provide a summary impact of traffic characteristics on crash occurrence. Sensitivity analyses were conducted to assess quality, publication bias, and outlier bias of the various studies; and the time intervals used to measure traffic characteristics were also considered. As a result of this comprehensive and systematic review, issues in study designs, traffic and crash data, and model development and validation are discussed. Outcomes of this study are intended to provide researchers focused on real-time crash prediction with greater insight into the modeling of this important but extremely challenging safety issue.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Safety-compromising accidents occur regularly in the led outdoor activity domain. Formal accident analysis is an accepted means of understanding such events and improving safety. Despite this, there remains no universally accepted framework for collecting and analysing accident data in the led outdoor activity domain. This article presents an application of Rasmussen's risk management framework to the analysis of the Lyme Bay sea canoeing incident. This involved the development of an Accimap, the outputs of which were used to evaluate seven predictions made by the framework. The Accimap output was also compared to an analysis using an existing model from the led outdoor activity domain. In conclusion, the Accimap output was found to be more comprehensive and supported all seven of the risk management framework's predictions, suggesting that it shows promise as a theoretically underpinned approach for analysing, and learning from, accidents in the led outdoor activity domain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systematic literature review and a comprehensive meta-analysis that combines the findings from existing studies, was conducted in this thesis to analyse the impact of traffic characteristics on crash occurrence. Sensitivity analyses were conducted to investigate the quality, publication bias and outlier bias of the various studies, and the time intervals used to measure traffic characteristics were considered. Based on this comprehensive and systematic review, and the results of the subsequent meta-analysis, major issues in study design, traffic and crash data, and model development and evaluation are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context Cancer patients experience a broad range of physical and psychological symptoms as a result of their disease and its treatment. On average, these patients report ten unrelieved and co-occurring symptoms. Objectives To determine if subgroups of oncology outpatients receiving active treatment (n=582) could be identified based on their distinct experience with thirteen commonly occurring symptoms; to determine whether these subgroups differed on select demographic, and clinical characteristics; and to determine if these subgroups differed on quality of life (QOL) outcomes. Methods Demographic, clinical, and symptom data from one Australian and two U.S. studies were combined. Latent class analysis (LCA) was used to identify patient subgroups with distinct symptom experiences based on self-report data on symptom occurrence using the Memorial Symptom Assessment Scale (MSAS). Results Four distinct latent classes were identified (i.e., All Low (28.0%), Moderate Physical and Lower Psych (26.3%), Moderate Physical and Higher Psych (25.4%), All High (20.3%)). Age, gender, education, cancer diagnosis, and presence of metastatic disease differentiated among the latent classes. Patients in the All High class had the worst QOL scores. Conclusion Findings from this study confirm the large amount of interindividual variability in the symptom experience of oncology patients. The identification of demographic and clinical characteristics that place patients are risk for a higher symptom burden can be used to guide more aggressive and individualized symptom management interventions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Problem The Manchester Driver Behaviour Questionnaire (DBQ) is the most commonly used self-report tool in traffic safety research and applied settings. It has been claimed that the violation factor of this instrument predicts accident involvement, which was supported by a previous meta-analysis. However, that analysis did not test for methodological effects, or include contacting researchers to obtain unpublished results. Method The present study re-analysed studies on prediction of accident involvement from DBQ factors, including lapses, and many unpublished effects. Tests of various types of dissemination bias and common method variance were undertaken. Results Outlier analysis showed that some effects were probably not reliable data, but excluding them did not change the results. For correlations between violations and crashes, tendencies for published effects to be larger than unpublished ones and for effects to decrease over time were observed, but were not significant. Also, analysis using the proxy of the mean of accidents in studies indicated that studies where effects for violations are unknown have smaller effect sizes. These differences indicate dissemination bias. Studies using self-reported accidents as dependent variables had much larger effects than those using recorded accident data. Also, zero-order correlations were larger than partial correlations that controlled for exposure. Similarly, violations/accidents effects were strong only when there was also a strong correlation between accidents and exposure. Overall, the true effect is probably very close to zero (r<.07) for violations versus traffic accident involvement, depending upon which systematic tendencies in the data are controlled for. Conclusions: Methodological factors and dissemination bias have inflated the mean effect size of the DBQ in the published literature. Strong evidence of various artefactual effects is apparent. Practical Applications A greater level of care should be taken if the DBQ continues to be used in traffic safety research. Also, validation of self-reports should be more comprehensive in the future, taking into account the possibility of common method variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Search engines have forever changed the way people access and discover knowledge, allowing information about almost any subject to be quickly and easily retrieved within seconds. As increasingly more material becomes available electronically the influence of search engines on our lives will continue to grow. This presents the problem of how to find what information is contained in each search engine, what bias a search engine may have, and how to select the best search engine for a particular information need. This research introduces a new method, search engine content analysis, in order to solve the above problem. Search engine content analysis is a new development of traditional information retrieval field called collection selection, which deals with general information repositories. Current research in collection selection relies on full access to the collection or estimations of the size of the collections. Also collection descriptions are often represented as term occurrence statistics. An automatic ontology learning method is developed for the search engine content analysis, which trains an ontology with world knowledge of hundreds of different subjects in a multilevel taxonomy. This ontology is then mined to find important classification rules, and these rules are used to perform an extensive analysis of the content of the largest general purpose Internet search engines in use today. Instead of representing collections as a set of terms, which commonly occurs in collection selection, they are represented as a set of subjects, leading to a more robust representation of information and a decrease of synonymy. The ontology based method was compared with ReDDE (Relevant Document Distribution Estimation method for resource selection) using the standard R-value metric, with encouraging results. ReDDE is the current state of the art collection selection method which relies on collection size estimation. The method was also used to analyse the content of the most popular search engines in use today, including Google and Yahoo. In addition several specialist search engines such as Pubmed and the U.S. Department of Agriculture were analysed. In conclusion, this research shows that the ontology based method mitigates the need for collection size estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2004, with the increasing overloading restriction requirements of society in Anhui, a provincial comprehensive overloading transportation survey has been developed to take evaluations on overloading actuality and enforcement efficiency with the support of the World Bank. A total of six site surveys were conducted at Hefei, Fuyang, Luan, Wuhu, Huainan and Huangshan Areas with four main contents respectively: traffic volume, axle load, freight information and registration information. Via statistical analysis on the survey data, conclusions were gained that: vehicle overloading are very universal and serious problems at arterial highways in Anhui now. The traffic loads have far exceeded the designed endure capacity of highways and have caused prevalent premature pavement damage, especially for rigid pavement. The overloading trucks are unimpeded engaged in highway freight transportation actually due to the disordered overloading enforcement strategies and the deficient inspecting technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The seasonality of suicide has long been recognised. However, little is known about the relative importance of socio-environmental factors in the occurrence of suicide in different geographical areas. This study examined the association of climate, socioeconomic and demographic factors with suicide in Queensland, Australia, using a spatiotemporal approach. Methods: Seasonal data on suicide, demographic variables and socioeconomic indexes for areas in each Local Government Area (LGA) between 1999 and 2003 were acquired from the Australian Bureau of Statistics. Climate data were supplied by the Australian Bureau of Meteorology. A multivariable generalized estimating equation model was used to examine the impact of socio-environmental factors on suicide. Results: The preliminary data analyses show that far north Queensland had the highest suicide incidence (e.g., Cook and Mornington Shires), while the south-western areas had the lowest incidence (e.g., Barcoo and Bauhinia Shires) in all the seasons. Maximum temperature, unemployment rate, the proportion of Indigenous population and the proportion of population with low individual income were statistically significantly and positively associated with suicide. There were weaker but not significant associations for other variables. Conclusions: Maximum temperature, the proportion of Indigenous population and unemployment rate appeared to be major determinants of suicide at a LGA level in Queensland.