7 resultados para abbreviations
em Queensland University of Technology - ePrints Archive
Resumo:
The use of symbols and abbreviations adds uniqueness and complexity to the mathematical language register. In this article, the reader’s attention is drawn to the multitude of symbols and abbreviations which are used in mathematics. The conventions which underpin the use of the symbols and abbreviations and the linguistic difficulties which learners of mathematics may encounter due to the inclusion of the symbolic language are discussed. 2010 NAPLAN numeracy tests are used to illustrate examples of the complexities of the symbolic language of mathematics.
Resumo:
Mastering Medical Terminology: Australia and New Zealand is medical terminology book of relevance to an audience in Australia and New Zealand. Australian terminology, perspectives, examples and spelling have been included and Australian pronunciation specified. The textbook is accompanied by a self-help workbook, an online workbook and a Smartphone app. Throughout Mastering Medical Terminology, review of medical terminology as it is used in clinical practice is highlighted. Features of the textbook, workbook and electronic product include: • Simple, non-technical explanations of medical terms • Workbook format with ample spaces to write answers • Explanations of clinical procedures, laboratory tests and abbreviations used in Australian clinical practice, as they apply to each body system and speciality area • Pronunciation of terms and spaces to write meanings of terms • Practical applications sections • Exercises that test understanding of terminology as students work through the text chapter by chapter • Review activities that pull together terminology to help students study • Comprehensive glossary and appendices for reference • Links to other useful references, such as websites and textbooks.
Resumo:
The increasing global distribution of automobiles necessitates that the design of In-vehicle Information Systems (IVIS) is appropriate for the regions to which they are being exported. Differences between regions such as culture, environment and traffic context can influence the needs, usability and acceptance of IVIS. This paper describes two studies aimed at identifying regional differences in IVIS design needs and preferences across drivers from Australia and China to determine the impact of any differences on IVIS design. Using a questionnaire and interaction clinics, the influence of cultural values and driving patterns on drivers' preferences for, and comprehension of, surface- and interaction-level aspects of IVIS interfaces was explored. Similarities and differences were found between the two regional groups in terms of preferences for IVIS input control types and labels and in the comprehension of IVIS functions. Specifically, Chinese drivers preferred symbols and Chinese characters over English words and were less successful (compared to Australians) at comprehending English abbreviations, particularly for complex IVIS functions. Implications in terms of the current trend to introduce Western-styled interfaces into other regions with little or no adaptation are discussed.
Resumo:
Twitter and other social media have become increasingly important tools for maintaining the relationships between fans and their idols across a range of activities, from politics and the arts to celebrity and sports culture. Twitter, Inc. itself has initiated several strategic approaches, especially to entertainment and sporting organisations; late in 2012, for example, a Twitter, Inc. delegation toured Australia in order to develop formal relationships with a number of key sporting bodies covering popular sports such as Australian Rules Football, A-League football (soccer), and V8 touring car racing, as well as to strengthen its connections with key Australian broadcasters and news organisations (Jackson & Christensen, 2012). Similarly, there has been a concerted effort between Twitter Germany and the German Bundesliga clubs and football association to coordinate the presence of German football on Twitter ahead of the 2012–2013 season: the Twitter accounts of almost all first-division teams now bear the official Twitter verification mark, and a system of ‘official’ hashtags for tweeting about individual games (combining the abbreviations of the two teams, e.g. #H96FCB) has also been instituted (Twitter auf Deutsch, 2012).
Resumo:
Discharge summaries and other free-text reports in healthcare transfer information between working shifts and geographic locations. Patients are likely to have difficulties in understanding their content, because of their medical jargon, non-standard abbreviations,and ward-specific idioms. This paper reports on an evaluation lab with an aim to support the continuum of care by developing methods and resources that make clinical reports in English easier to understand for patients, and which helps them in finding information related to their condition.
Resumo:
This paper reports on the 2nd ShARe/CLEFeHealth evaluation lab which continues our evaluation resource building activities for the medical domain. In this lab we focus on patients' information needs as opposed to the more common campaign focus of the specialised information needs of physicians and other healthcare workers. The usage scenario of the lab is to ease patients and next-of-kins' ease in understanding eHealth information, in particular clinical reports. The 1st ShARe/CLEFeHealth evaluation lab was held in 2013. This lab consisted of three tasks. Task 1 focused on named entity recognition and normalization of disorders; Task 2 on normalization of acronyms/abbreviations; and Task 3 on information retrieval to address questions patients may have when reading clinical reports. This year's lab introduces a new challenge in Task 1 on visual-interactive search and exploration of eHealth data. Its aim is to help patients (or their next-of-kin) in readability issues related to their hospital discharge documents and related information search on the Internet. Task 2 then continues the information extraction work of the 2013 lab, specifically focusing on disorder attribute identification and normalization from clinical text. Finally, this year's Task 3 further extends the 2013 information retrieval task, by cleaning the 2013 document collection and introducing a new query generation method and multilingual queries. De-identified clinical reports used by the three tasks were from US intensive care and originated from the MIMIC II database. Other text documents for Tasks 1 and 3 were from the Internet and originated from the Khresmoi project. Task 2 annotations originated from the ShARe annotations. For Tasks 1 and 3, new annotations, queries, and relevance assessments were created. 50, 79, and 91 people registered their interest in Tasks 1, 2, and 3, respectively. 24 unique teams participated with 1, 10, and 14 teams in Tasks 1, 2 and 3, respectively. The teams were from Africa, Asia, Canada, Europe, and North America. The Task 1 submission, reviewed by 5 expert peers, related to the task evaluation category of Effective use of interaction and targeted the needs of both expert and novice users. The best system had an Accuracy of 0.868 in Task 2a, an F1-score of 0.576 in Task 2b, and Precision at 10 (P@10) of 0.756 in Task 3. The results demonstrate the substantial community interest and capabilities of these systems in making clinical reports easier to understand for patients. The organisers have made data and tools available for future research and development.
Resumo:
Description of a patient's injuries is recorded in narrative text form by hospital emergency departments. For statistical reporting, this text data needs to be mapped to pre-defined codes. Existing research in this field uses the Naïve Bayes probabilistic method to build classifiers for mapping. In this paper, we focus on providing guidance on the selection of a classification method. We build a number of classifiers belonging to different classification families such as decision tree, probabilistic, neural networks, and instance-based, ensemble-based and kernel-based linear classifiers. An extensive pre-processing is carried out to ensure the quality of data and, in hence, the quality classification outcome. The records with a null entry in injury description are removed. The misspelling correction process is carried out by finding and replacing the misspelt word with a soundlike word. Meaningful phrases have been identified and kept, instead of removing the part of phrase as a stop word. The abbreviations appearing in many forms of entry are manually identified and only one form of abbreviations is used. Clustering is utilised to discriminate between non-frequent and frequent terms. This process reduced the number of text features dramatically from about 28,000 to 5000. The medical narrative text injury dataset, under consideration, is composed of many short documents. The data can be characterized as high-dimensional and sparse, i.e., few features are irrelevant but features are correlated with one another. Therefore, Matrix factorization techniques such as Singular Value Decomposition (SVD) and Non Negative Matrix Factorization (NNMF) have been used to map the processed feature space to a lower-dimensional feature space. Classifiers with these reduced feature space have been built. In experiments, a set of tests are conducted to reflect which classification method is best for the medical text classification. The Non Negative Matrix Factorization with Support Vector Machine method can achieve 93% precision which is higher than all the tested traditional classifiers. We also found that TF/IDF weighting which works well for long text classification is inferior to binary weighting in short document classification. Another finding is that the Top-n terms should be removed in consultation with medical experts, as it affects the classification performance.