129 resultados para YANG-BAXTER EQUATIONS
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
Fractional Fokker–Planck equations have been used to model several physical situations that present anomalous diffusion. In this paper, a class of time- and space-fractional Fokker–Planck equations (TSFFPE), which involve the Riemann–Liouville time-fractional derivative of order 1-α (α(0, 1)) and the Riesz space-fractional derivative (RSFD) of order μ(1, 2), are considered. The solution of TSFFPE is important for describing the competition between subdiffusion and Lévy flights. However, effective numerical methods for solving TSFFPE are still in their infancy. We present three computationally efficient numerical methods to deal with the RSFD, and approximate the Riemann–Liouville time-fractional derivative using the Grünwald method. The TSFFPE is then transformed into a system of ordinary differential equations (ODE), which is solved by the fractional implicit trapezoidal method (FITM). Finally, numerical results are given to demonstrate the effectiveness of these methods. These techniques can also be applied to solve other types of fractional partial differential equations.
Resumo:
We consider time-space fractional reaction diffusion equations in two dimensions. This equation is obtained from the standard reaction diffusion equation by replacing the first order time derivative with the Caputo fractional derivative, and the second order space derivatives with the fractional Laplacian. Using the matrix transfer technique proposed by Ilic, Liu, Turner and Anh [Fract. Calc. Appl. Anal., 9:333--349, 2006] and the numerical solution strategy used by Yang, Turner, Liu, and Ilic [SIAM J. Scientific Computing, 33:1159--1180, 2011], the solution of the time-space fractional reaction diffusion equations in two dimensions can be written in terms of a matrix function vector product $f(A)b$ at each time step, where $A$ is an approximate matrix representation of the standard Laplacian. We use the finite volume method over unstructured triangular meshes to generate the matrix $A$, which is therefore non-symmetric. However, the standard Lanczos method for approximating $f(A)b$ requires that $A$ is symmetric. We propose a simple and novel transformation in which the standard Lanczos method is still applicable to find $f(A)b$, despite the loss of symmetry. Numerical results are presented to verify the accuracy and efficiency of our newly proposed numerical solution strategy.
Resumo:
A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Gr¨unwald finite difference formulas to approximate the two-sided(i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobianfree Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy.
Resumo:
We consider a two-dimensional space-fractional reaction diffusion equation with a fractional Laplacian operator and homogeneous Neumann boundary conditions. The finite volume method is used with the matrix transfer technique of Ilić et al. (2006) to discretise in space, yielding a system of equations that requires the action of a matrix function to solve at each timestep. Rather than form this matrix function explicitly, we use Krylov subspace techniques to approximate the action of this matrix function. Specifically, we apply the Lanczos method, after a suitable transformation of the problem to recover symmetry. To improve the convergence of this method, we utilise a preconditioner that deflates the smallest eigenvalues from the spectrum. We demonstrate the efficiency of our approach for a fractional Fisher’s equation on the unit disk.
Resumo:
Fractional differential equations have been increasingly used as a powerful tool to model the non-locality and spatial heterogeneity inherent in many real-world problems. However, a constant challenge faced by researchers in this area is the high computational expense of obtaining numerical solutions of these fractional models, owing to the non-local nature of fractional derivatives. In this paper, we introduce a finite volume scheme with preconditioned Lanczos method as an attractive and high-efficiency approach for solving two-dimensional space-fractional reaction–diffusion equations. The computational heart of this approach is the efficient computation of a matrix-function-vector product f(A)bf(A)b, where A A is the matrix representation of the Laplacian obtained from the finite volume method and is non-symmetric. A key aspect of our proposed approach is that the popular Lanczos method for symmetric matrices is applied to this non-symmetric problem, after a suitable transformation. Furthermore, the convergence of the Lanczos method is greatly improved by incorporating a preconditioner. Our approach is show-cased by solving the fractional Fisher equation including a validation of the solution and an analysis of the behaviour of the model.
Resumo:
The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.
Resumo:
Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.
Resumo:
The solution of linear ordinary differential equations (ODEs) is commonly taught in first year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognising what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to tables of solutions, is an important skill for students to carry with them to advanced studies in mathematics. In this study we describe a teaching and learning strategy that replaces the traditional algorithmic, transmission presentation style for solving ODEs with a constructive, discovery based approach where students employ their existing skills as a framework for constructing the solutions of first and second order linear ODEs. We elaborate on how the strategy was implemented and discuss the resulting impact on a first year undergraduate class. Finally we propose further improvements to the strategy as well as suggesting other topics which could be taught in a similar manner.