305 resultados para Weighted Lp Norm
em Queensland University of Technology - ePrints Archive
Resumo:
A data-driven background dataset refinement technique was recently proposed for SVM based speaker verification. This method selects a refined SVM background dataset from a set of candidate impostor examples after individually ranking examples by their relevance. This paper extends this technique to the refinement of the T-norm dataset for SVM-based speaker verification. The independent refinement of the background and T-norm datasets provides a means of investigating the sensitivity of SVM-based speaker verification performance to the selection of each of these datasets. Using refined datasets provided improvements of 13% in min. DCF and 9% in EER over the full set of impostor examples on the 2006 SRE corpus with the majority of these gains due to refinement of the T-norm dataset. Similar trends were observed for the unseen data of the NIST 2008 SRE.
Resumo:
The genre of narratives has become the genre of choice in many classrooms since the introduction of NAPLAN into Australian schools. Yet, Knapp and Watkins (2005) argue that narratives are the least understood of all the genres. Despite wide-spread acceptance that narratives serve the social purpose of entertaining, they can also be more edgy, offering a powerful social or information role. This paper considers the effects of exposing novices to less standard realms of social discourse and disciplinary knowledge vis-a-vis a more clinical treatment focused on ‘standard’ narratives. I argue that we should not shy away from the challenges of edgy narratives just because our students are novice readers. The same holds true for our work in communities on the edge, that is where poverty, multiculturalism or multilingualism and systemic failure are the norm. I am part of an Australian Research Council (ARC) Linkage Grant (LP 0990289) working in such a community. Like many such situations, teachers in these communities are caught in the fray of establishing a dialogue between the culture of federally mandated performance orientated reforms and the cultures and discourses of the lives and future needs of their students (see Exley & Singh, in press).
Resumo:
Uncooperative iris identification systems at a distance and on the move often suffer from poor resolution and poor focus of the captured iris images. The lack of pixel resolution and well-focused images significantly degrades the iris recognition performance. This paper proposes a new approach to incorporate the focus score into a reconstruction-based super-resolution process to generate a high resolution iris image from a low resolution and focus inconsistent video sequence of an eye. A reconstruction-based technique, which can incorporate middle and high frequency components from multiple low resolution frames into one desired super-resolved frame without introducing false high frequency components, is used. A new focus assessment approach is proposed for uncooperative iris at a distance and on the move to improve performance for variations in lighting, size and occlusion. A novel fusion scheme is then proposed to incorporate the proposed focus score into the super-resolution process. The experiments conducted on the The Multiple Biometric Grand Challenge portal database shows that our proposed approach achieves an EER of 2.1%, outperforming the existing state-of-the-art averaging signal-level fusion approach by 19.2% and the robust mean super-resolution approach by 8.7%.
Resumo:
In this paper, weighted fair rate allocation for ATM available bit rate (ABR) service is discussed with the concern of the minimum cell rate (MCR). Weighted fairness with MCR guarantee has been discussed recently in the literature. In those studies, each ABR virtual connection (VC) is first allocated its MCR, then the remaining available bandwidth is further shared among ABR VCs according to their weights. For the weighted fairness defined in this paper, the bandwidth is first allocated according to each VC's weight; if a VC's weighted share is less than its MCR, it should be allocated its MCR instead of the weighted share. This weighted fairness with MCR guarantee is referred to as extended weighted (EXW) fairness. Certain theoretical issues related to EXW, such as its global solution and bottleneck structure, are first discussed in the paper. A distributed explicit rate allocation algorithm is then proposed to achieve EXW fairness in ATM networks. The algorithm is a general-purpose explicit rate algorithm in the sense that it can realise almost all the fairness principles proposed for ABR so far whilst only minor modifications may be needed.
Resumo:
One of the faba bean viruses found in West Asia and North Africa was identified as broad bean mottle virus (BBMV) by host reactions, particle morphology and size, serology, and granular, often vesiculated cytoplasmic inclusions. Detailed research on four isolates, one each from Morocco, Tunisia, Sudan and Syria, provided new information on the virus. The isolates, though indistinguishable in ELISA or gel-diffusion tests, differed slightly in host range and symptoms. Twenty-one species (12 legumes and 9 non-legumes) out of 27 tested were systemically infected, and 14 of these by all four isolates. Infection in several species was symptomless, but major legumes such as chickpea, lentil and especially pea, suffered severely from infection. All 23 genotypes of faba bean, 2 of chickpea, 4 of lentil, 11 out of 21 of Phaseolus bean, and 16 out of 17 of pea were systemically sensitive to the virus. Twelve plant species were found to be new potential hosts and cucumber a new local-lesion test plant of the virus. BBMV particles occurred in faba bean plants in very high concentrations and seed transmission in this species (1.37%) was confirmed. An isolate from Syria was purified and two antisera were produced, one of which was used in ELISA to detect BBMV in faba bean field samples. Two hundred and three out of the 789 samples with symptoms suggestive of virus infection collected in 1985, 1986 and 1987, were found infected with BBMV: 4 out of 70 (4/70) tested samples from Egypt, 0/44 from Lebanon, 1/15 from Morocco, 46/254 from Sudan, 72/269 from Syria and 80/137 from Tunisia. This is the first report on its occurrence in Egypt, Syria and Tunisia. The virus is a potential threat to crop improvement in the region.
Resumo:
Social tags are an important information source in Web 2.0. They can be used to describe users’ topic preferences as well as the content of items to make personalized recommendations. However, since tags are arbitrary words given by users, they contain a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise brings difficulties to improve the accuracy of item recommendations. To eliminate the noise of tags, in this paper we propose to use the multiple relationships among users, items and tags to find the semantic meaning of each tag for each user individually. With the proposed approach, the relevant tags of each item and the tag preferences of each user are determined. In addition, the user and item-based collaborative filtering combined with the content filtering approach are explored. The effectiveness of the proposed approaches is demonstrated in the experiments conducted on real world datasets collected from Amazon.com and citeULike website.
Resumo:
Social tags in web 2.0 are becoming another important information source to describe the content of items as well as to profile users’ topic preferences. However, as arbitrary words given by users, tags contains a lot of noise such as tag synonym and semantic ambiguity a large number personal tags that only used by one user, which brings challenges to effectively use tags to make item recommendations. To solve these problems, this paper proposes to use a set of related tags along with their weights to represent semantic meaning of each tag for each user individually. A hybrid recommendation generation approaches that based on the weighted tags are proposed. We have conducted experiments using the real world dataset obtained from Amazon.com. The experimental results show that the proposed approaches outperform the other state of the art approaches.
Resumo:
There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.
Resumo:
In this paper we explore the ability of a recent model-based learning technique Receding Horizon Locally Weighted Regression (RH-LWR) useful for learning temporally dependent systems. In particular this paper investigates the application of RH-LWR to learn control of Multiple-input Multiple-output robot systems. RH-LWR is demonstrated through learning joint velocity and position control of a three Degree of Freedom (DoF) rigid body robot.
Resumo:
This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification.
Resumo:
This paper investigates the use of the dimensionality-reduction techniques weighted linear discriminant analysis (WLDA), and weighted median fisher discriminant analysis (WMFD), before probabilistic linear discriminant analysis (PLDA) modeling for the purpose of improving speaker verification performance in the presence of high inter-session variability. Recently it was shown that WLDA techniques can provide improvement over traditional linear discriminant analysis (LDA) for channel compensation in i-vector based speaker verification systems. We show in this paper that the speaker discriminative information that is available in the distance between pair of speakers clustered in the development i-vector space can also be exploited in heavy-tailed PLDA modeling by using the weighted discriminant approaches prior to PLDA modeling. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that WLDA and WMFD projections before PLDA modeling can provide an improved approach when compared to uncompensated PLDA modeling for i-vector based speaker verification systems.
Resumo:
The health effects of environmental hazards are often examined using time series of the association between a daily response variable (e.g., death) and a daily level of exposure (e.g., temperature). Exposures are usually the average from a network of stations. This gives each station equal importance, and negates the opportunity for some stations to be better measures of exposure. We used a Bayesian hierarchical model that weighted stations using random variables between zero and one. We compared the weighted estimates to the standard model using data on health outcomes (deaths and hospital admissions) and exposures (air pollution and temperature) in Brisbane, Australia. The improvements in model fit were relatively small, and the estimated health effects of pollution were similar using either the standard or weighted estimates. Spatial weighted exposures would be probably more worthwhile when there is either greater spatial detail in the health outcome, or a greater spatial variation in exposure.