18 resultados para Weathering

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex. Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free 'biomantle' over a ferric 'stone line'. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A profluorescent nitroxide possessing an isoindoline nitroxide moiety linked to a perylene fluorophore was developed to monitor radical mediated degradation of melamine-formaldehyde crosslinked polyester coil coatings in an industry standard accelerated weathering tester. Trapping of polyester-derived radicals (most likely C-radicals) that are generated during polymer degradation leads to fluorescent closed-shell alkoxy amines, which was used to obtain time-dependent degradation profiles to assess the relative stability of different polyesters towards weathering. The nitroxide probe couples excellent thermal stability and satisfactory photostability with high sensitivity and enables detection of free radical damage in polyesters under conditions that mimic exposure to the environment on a time scale of hours rather than months or years required by other testing methods. There are indications that the profluorescent nitroxide undergoes partial photo-degradation in the absence of polymer-derived radicals. Unexpectedly, it was also found that UV-induced fragmentation of the NO–C bond in closed-shell alkoxy amines leads to regeneration of the profluorescent nitroxide and the respective C-radical. The maximum fluorescence intensity that could be achieved with a given probe concentration is therefore not only determined by the amount of polyester radicals formed during accelerated weathering, but also by the light-driven side reactions of the profluorescent nitroxide and the corresponding alkoxy amine radical trapping products. Studies to determine the optimum probe concentration in the polymer matrix revealed that aggregation and re-absorption effects lowered the fluorescence intensity at higher concentrations of the profluorescent nitroxide, but too low probe concentrations, where these effects would be avoided, were not sufficient to trap the amount of polyester radicals formed upon weathering. The optimized experimental conditions were used to assess the impact of temperature and UV irradiance on polymer degradation during accelerated weathering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study reported here, constitutes a full review of the major geological events that have influenced the morphological development of the southeast Queensland region. Most importantly, it provides evidence that the region’s physiography continues to be geologically ‘active’ and although earthquakes are presently few and of low magnitude, many past events and tectonic regimes continue to be strongly influential over drainage, morphology and topography. Southeast Queensland is typified by highland terrain of metasedimentary and igneous rocks that are parallel and close to younger, lowland coastal terrain. The region is currently situated in a passive margin tectonic setting that is now under compressive stress, although in the past, the region was subject to alternating extensional and compressive regimes. As part of the investigation, the effects of many past geological events upon landscape morphology have been assessed at multiple scales using features such as the location and orientation of drainage channels, topography, faults, fractures, scarps, cleavage, volcanic centres and deposits, and recent earthquake activity. A number of hypotheses for local geological evolution are proposed and discussed. This study has also utilised a geographic information system (GIS) approach that successfully amalgamates the various types and scales of datasets used. A new method of stream ordination has been developed and is used to compare the orientation of channels of similar orders with rock fabric, in a topologically controlled approach that other ordering systems are unable to achieve. Stream pattern analysis has been performed and the results provide evidence that many drainage systems in southeast Queensland are controlled by known geological structures and by past geological events. The results conclude that drainage at a fine scale is controlled by cleavage, joints and faults, and at a broader scale, large river valleys, such as those of the Brisbane River and North Pine River, closely follow the location of faults. These rivers appear to have become entrenched by differential weathering along these planes of weakness. Significantly, stream pattern analysis has also identified some ‘anomalous’ drainage that suggests the orientations of these watercourses are geologically controlled, but by unknown causes. To the north of Brisbane, a ‘coastal drainage divide’ has been recognized and is described here. The divide crosses several lithological units of different age, continues parallel to the coast and prevents drainage from the highlands flowing directly to the coast for its entire length. Diversion of low order streams away from the divide may be evidence that a more recent process may be the driving force. Although there is no conclusive evidence for this at present, it is postulated that the divide may have been generated by uplift or doming associated with mid-Cenozoic volcanism or a blind thrust at depth. Also north of Brisbane, on the D’Aguilar Range, an elevated valley (the ‘Kilcoy Gap’) has been identified that may have once drained towards the coast and now displays reversed drainage that may have resulted from uplift along the coastal drainage divide and of the D’Aguilar blocks. An assessment of the distribution and intensity of recent earthquakes in the region indicates that activity may be associated with ancient faults. However, recent movement on these faults during these events would have been unlikely, given that earthquakes in the region are characteristically of low magnitude. There is, however, evidence that compressive stress is building and being released periodically and ancient faults may be a likely place for this stress to be released. The relationship between ancient fault systems and the Tweed Shield Volcano has also been discussed and it is suggested here that the volcanic activity was associated with renewed faulting on the Great Moreton Fault System during the Cenozoic. The geomorphology and drainage patterns of southeast Queensland have been compared with expected morphological characteristics found at passive and other tectonic settings, both in Australia and globally. Of note are the comparisons with the East Brazilian Highlands, the Gulf of Mexico and the Blue Ridge Escarpment, for example. In conclusion, the results of the study clearly show that, although the region is described as a passive margin, its complex, past geological history and present compressive stress regime provide a more intricate and varied landscape than would be expected along typical passive continental margins. The literature review provides background to the subject and discusses previous work and methods, whilst the findings are presented in three peer-reviewed, published papers. The methods, hypotheses, suggestions and evidence are discussed at length in the final chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In their correspondence, He and colleagues question our conclusion of little or no uplift preceding Emeishan volcanism that we reported in our letter1. Debate concerns the nature of the contact between the Maokou limestone and Emeishan volcanics, the depositional environment and volumetric significance of mafic hydromagmatic deposits (MHDs), and evidence for symmetrical domal thinning. MHDs in the Daqiao section are separated from the Maokou limestone by 100 m of subaerial basaltic lavas, but elsewhere MHDs — previously interpreted as basal conglomerates2, 3 — directly overlie the Maokou2, 3. MHDs thus feature strongly in basal sections of the Emeishan lava succession, as also recently shown4 elsewhere in the Emeishan. An irregular surface at the top of the Maokou limestone has been interpreted as an erosional unconformity2, 3, but clastic deposits presented as evidence of this erosion2, 3 are MHDs produced by explosive magma–water interaction1. A clear demonstration that this irregular top surface is an erosional truncation of limestone reef facies (slope/rim, flat, lagoonal) is currently lacking, but is critical because reefs and carbonate platforms show considerable natural relief of tens of metres. The persistent hot, wet climate since the Oligocene has produced well-developed weathering profiles on exposed Palaeozoic marine sedimentary sequences5, but weathering and karst relief of the uppermost Maokou limestone underlying the flood basalts have not been properly documented, nor shown to be of middle Permian age and immediately preceding emplacement of the large igneous province.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated potential palaeoclimate proxies provided by rare earth element (REE) geochemistry in speleothems and in clay mineralogy of cave sediments. Speleothem and sediment samples were collected from a series of cave fill deposits that occurred with rich vertebrate fossil assemblages in and around Mount Etna National Park, Rockhampton (central coastal Queensland). The fossil deposits range from Plio- Pleistocene to Holocene in age (based on uranium/thorium dating) and appear to represent depositional environments ranging from enclosed rainforest to semi-arid grasslands. Therefore, the Mount Etna cave deposits offer the perfect opportunity to test new palaeoclimate tools as they include deposits that span a known significant climate shift on the basis of independent faunal data. The first section of this study investigates the REE distribution of the host limestone to provide baseline geochemistry for subsequent speleothem investigations. The Devonian Mount Etna Beds were found to be more complex than previous literature had documented. The studied limestone massif is overturned, highly recrystallised in parts and consists of numerous allochthonous blocks with different spatial orientations. Despite the complex geologic history of the Mount Etna Beds, Devonian seawater-like REE patterns were recovered in some parts of the limestone and baseline geochemistry was determined for the bulk limestone for comparison with speleothem REE patterns. The second part of the study focused on REE distribution in the karst system and the palaeoclimatic implications of such records. It was found that REEs have a high affinity for calcite surfaces and that REE distributions in speleothems vary between growth bands much more than along growth bands, thus providing a temporal record that may relate to environmental changes. The morphology of different speleothems (i.e., stalactites, stalagmites, and flowstones) has little bearing on REE distributions provided they are not contaminated with particulate fines. Thus, baseline knowledge developed in the study suggested that speleothems were basically comparable for assessing palaeoclimatically controlled variations in REE distributions. Speleothems from rainforest and semi-arid phases were compared and it was found that there are definable differences in REE distribution that can be attributed to climate. In particular during semiarid phases, total REE concentration decreased, LREE became more depleted, Y/Ho increased, La anomalies were more positive and Ce anomalies were more negative. This may reflect more soil development during rainforest phases and more organic particles and colloids, which are known to transport REEs, in karst waters. However, on a finer temporal scale (i.e. growth bands) within speleothems from the same climate regime, no difference was seen. It is suggested that this may be due to inadequate time for soil development changes on the time frames represented by differences in growth band density. The third part of the study was a reconnaissance investigation focused on mineralogy of clay cave sediments, illite/kaolinite ratios in particular, and the potential palaeoclimatic implications of such records. Although the sample distribution was not optimal, the preliminary results suggest that the illite/kaolinite ratio increased during cold and dry intervals, consistent with decreased chemical weathering during those times. The study provides a basic framework for future studies at differing latitudes to further constrain the parameters of the proxy. The identification of such a proxy recorded in cave sediment has broad implications as clay ratios could potentially provide a basic local climate proxy in the absence of fossil faunas and speleothem material. This study suggests that REEs distributed in speleothems may provide information about water throughput and soil formation, thus providing a potential palaeoclimate proxy. It highlights the importance of understanding the host limestone geochemistry and broadens the distribution and potential number of cave field sites as palaeoclimate information no longer relies solely on the presence of fossil faunas and or speleothems. However, additional research is required to better understand the temporal scales required for the proxies to be recognised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal beds. To mine this gas, wells are drilled directly into an underground coal seam and groundwater (CSG water) is pumped out to the surface. This lowers the downhole piezometric pressure and enables gas desporption from the coal matrix. In the United States, this gas has been extracted commercially since the 1980s. The economic success of US CSG projects has inspired exploration and development in Australia and New Zealand. In Australia, Queensland’s Bowen and Surat basins have been the subject of increased CSG development over the last decade. CSG growth in other Australian basins has not matured to the same level but exploration and development are taking place at an accelerated pace in the Sydney Basin (Illawarra and the Hunter Valley, NSW) and in the Gunnedah Basin. Similarly, CSG exploration in New Zealand has focused in the Waikato region (Maramarua and Huntly), in the West Coast region (Buller, Reefton, and Greymouth), and in Southland (Kaitangata, Mataura, and Ohai). Figure 1 shows a Shcoeller diagram with CSG samples from selected basins in Australia, New Zealand, and the USA. CSG water from all of these basins exhibit the same geochemical signature – low calcium, low magnesium, high bicarbonate, low sulphate and, sometimes, high chloride. This water quality is a direct result of specific biological and geological processes that have taken part in the formation of CSG. In general, these processes include the weathering of rocks (carbonates, dolomite, and halite), cation exchange with clays (responsible for enhanced sodium and depleted calcium and magnesium), and biogenic processes (accounting for the presence of high bicarbonate concentrations). The salinity of CSG waters tends to be brackish (TDS < 30000 mg/l) with a fairly neutral pH. These particular characteristics need to be taken into consideration when assessing water management and disposal alternatives. Environmental issues associated with CSG water disposal have been prominent in developed basins such as the Powder River Basin (PRB) in the United States. When disposed on the land or used for irrigation, water having a high dissolved salts content may reduce water availability to crops thus affecting crop yield. In addition, the high sodium, low calcium and low magnesium concentrations increase the potential to disperse soils and significantly reduce the water infiltration rate. Therefore, CSG waters need to be properly characterised, treated, and disposed to safeguard the environment without compromising other natural resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared spectroscopy has been used to characterize and compare four palygorskite mineral samples from China. The position of the main bands identified by infrared spectra is similar, but there are some differences in intensity, which are significant. In addition, several additional bands are observed in the spectra of palygorskite and their impurities. This variability is attributed to differences in the geological environment, such as the degree of weathering and the extent of transportation of the minerals during formation or deposition, and the impurity content in these palygorskites. The bands of water and hydroxyl groups in these spectra of palygorskite samples have been studied. The characteristic band of palygorskite is observed at 1195 cm�1. Another four bands observed at 3480, 3380, 3266 and 3190 cm�1 are attributed to the water molecules in the palygorskite structure. These results suggest that the infrared spectra of palygorskites mineral from different regions are decided not only by the main physicochemical properties of palygorskite, but also by the amount and kind of impurities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The safe working lifetime of a structure in a corrosive or other harsh environment is frequently not limited by the material itself but rather by the integrity of the coating material. Advanced surface coatings are usually crosslinked organic polymers such as epoxies and polyurethanes which must not shrink, crack or degrade when exposed to environmental extremes. While standard test methods for environmental durability of coatings have been devised, the tests are structured more towards determining the end of life rather than in anticipation of degradation. We have been developing prognostic tools to anticipate coating failure by using a fundamental understanding of their degradation behaviour which, depending on the polymer structure, is mediated through hydrolytic or oxidation processes. Fourier transform infrared spectroscopy (FTIR) is a widely-used laboratory technique for the analysis of polymer degradation and with the development of portable FTIR spectrometers, new opportunities have arisen to measure polymer degradation non-destructively in the field. For IR reflectance sampling, both diffuse (scattered) and specular (direct) reflections can occur. The complexity in these spectra has provided interesting opportunities to study surface chemical and physical changes during paint curing, service abrasion and weathering, but has often required the use of advanced statistical analysis methods such as chemometrics to discern these changes. Results from our studies using this and related techniques and the technical challenges that have arisen will be presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Favel Parrett’s second novel, When the Night Comes, opens with its teenage protagonist Isla lying awake in her bunk on a night ferry to Tasmania in the mid-1980s, ‘waiting for the rough seas’. Her younger brother sleeps beside her, and her distracted, emotionally distant mother – the kind of woman who is ‘always sitting places by herself in the night’ – is smoking on deck. Together, the three are weathering the roiling overnight passage in order to escape a violent past and make a new life in Hobart. The rough seas the novel goes on to navigate are, as one might expect, both literal and metaphorical...